(e Ci=Tk=2-Th{2%) EMCEE ERCCI2FMPEIRS pT-ccELE
fiFiralCY E&}UET O ICE kg 1RZLUTIVE £3E
(650 e ¢ b0 EVigsdr Q1 (s

1ik
(1 C¢t
Unclasz
G/l zHZd4t

NASA TECHNICAL NASA TM X- 74029
MEMORANDUM
><
-=
[—
-<
W
L
=

ANOPP Programmers' Reference Manual for the Executive System
by

Ronnie E. Gillian, Christine G. Brown, Robert W. Bartlett,
and Patricia H. Baucom

APRIL 1977

This Informal documentation medium is used 1o provide accelerated or
special release of technical intormation to selected users. The contents
may not meet NASA formal editing and publication standards, may be re-
vised, or may be incorporated in another publication.

NANASAN\

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

T™M X-74029

4. Title and Subtitle 5. lepol"n'i "f977
ANOPP Programmers' Reference Manual for the P
Executive System 6. Performing Organization Code
7. Author(s) 8. Performina Oraanization Report No.

Ronnie E. Gillian, Christine G. Brown,

*Robert W. Bartlett, and*Patricia H. Baucom
10. Work Unit No.

9. Performing Organization Name and Addre;s 505-03-21
NASA Lang]e‘y Re§earch Center 11. Contract or Grant No.
Hampton, Virginia 23665
13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration
. 14. Sponsoring Agency Code
Washington, D. C. 20546
15 Supplementary Notes

*Mr. Bartlett and Ms. Baucom are members of the Control Data Corporation.

16.

Abstract

The ANOPP Programmers' Reference Manual for the Executive System embodies the documents:
tion for ANOPP as of release level 01/00/00. The manual is designed for users who
have need for understanding the internal design and logical concepts of the ANOPP

Executive System software. Emphasis is placed on providing sufficient information
to the programmer to modify the system for enhancements or error correction.

The ANOPP Executive System includes software related to operating system interface,
executive control, and data base management for the Aircraft Noise Prediction
Program. It is written in Fortran IV for use on CDC Cyber series of computers.

-

17. Key Words (Suggested by Author(s}) 18. Distribution Statement
ANOPP Unclassified - Unlimited
19. Security Classif. (of this report) 20. Security Classif. {of this page) 21. No. of Pages 22, Price®
Unclassified Unclassified 380 $10.75

* For sale by the National Technical Information Service, Springfield. Virginia 22161

PREFACE

The ANOPP Programmers Reference Manual For Executive System embodies the documen-
tation in its entirity for ANOPP as of release level 01/00/00. Additional manuals are
anticipated in order to satisfy the various needs of the ANOPP user community. These

anticipated manuals include the following:

Theoretical Manual
User's Manual
Demonstration Problem Manual

Functional Module Writer's Guide

The Programmers Reference Manual is designed for usage by those who have need for
understanding internal design and logical concepts of the ANOFP Executive System. Emphasis
has been placed on providing sufficient information to the programmer in order to modify

the system in pursuit of either enhancements or error correction.

(gf vay,
Poog g ¢ Imf
7,

ANOPP PROGRAMMERS REFERENCE MANUAL FOR

EXECUTIVE SYSTEM

TABLE OF CONTENTS

INTRODUCTION
1.1 Program Overview
1,2 Functional Module Concept
1.3 Contgol Statement Concepts
1.4 Dynamic Core Concept
1.5 ANOPP Imput/Output
1.6 Executive Management
1.7 Dynamic Storage Management
1.8 Data Base Management
1.9 Update
1.10 Error and Termination Philosophy
STANDARDS
2.1 Scope
2.2 Design
2.2.1 Module Standards
2.2.2 Depth of Design
2.2.3 Logic Structures
2.2.4 Design Documentation éﬁi‘r‘“'iL o
2.3 Coding - A
2.3.1 Source Code Documentation
2.3.2 FORTRAN Language Standards
2.3.3 Assembly Language Standards
2.4 Tests
2.5 Publishable Documentation

FRECEA T

2.5.1 Types of Publishable Documentation
iii

PAGg C
Gy BLANK NOT v v

2.5.2

2,5.3

*TABLE OF CONTENTS

Publishable Manual Preparation

Changes to Baseline Manuals

3. EXECUTIVE MODULES

3.1

3.2

3.3

Overview

Labelled Common Blocks

3.2.1
3.2.2
3.2.3

3.2.4

3.2.7
3.2.8
3.2.9
3.2.10
3.2.11
3.2.12
3.2.13

3.2.14

XBSC
XCAC
XCRC
XCs
XCSFM
XCSPC
XCVT
XDBMC
XDSMC
XDTMC
XP@TH
XRPQT
XSPT

XUPC

Executive Control Structures

3.3.1

System Table Types

3.3.1.1 System Table Type 1
3.3.1.2 System Table Type 2
3.3.1.3 System Table Type 3
Active Member Directory (AMD)
Alternate Names Table (ANT)
Data Table Directory (DTD)

Data Unit Directory (DUD)

iv

TABLE OF CONTENTS

3.3.6 Member Control Block (MCB)
3.3.8 Sequential Library File Directory (LFD)
3.3.9 Sequential Labrary Load Table (LLT)
3,3.10 Sequential Library Unit Table (LUT)
3.3.11 User Parameter Table (UPT)
3.3.12 User String Table (UST)
3.4 Executive Data Base Scructure
3.4.1 Data Unit
3.4,1.1 Data Unit Structure
3.4.1.2 Data Unit Header (DUH)
3.4.1.3 Data Member Directory {(DMD)
3.4.,2 Data Member
3.4.2.1 Data Member Structure
3.4.2,2 Data Member Header (DMH)
3.4,2.3 Format Specification Image (FSI)
3.4.2.4 Format Specification Table (FST)
3.4.2.5 Record Directory (RD)
. 3.4,2.6 Record Subdirectory (RS)
3.4.3 Data Table Types
3,4.3.1 Data Table Type 1
3.4.4 Sequential Labrary
3.4,4.1 Sequential Library Structure
3.4.4.2 Library Directory Record (LDR)
3.4,4.3 Library Unit Header (LUH)
3.9.4.4 Library Data Member (LDM)
3.4.5 Reserved Units
3.4,5.1 XSUNIT
3.4.5.1.1 MXXX Member
3.4.5.1.2 UXXX Member

CLOTNAY PAGE IS 3.4.5,2 Data
7 POOR QUALITY v

TABLE OF CONTENTS

3.5 Executive’Management System
3.5.1 Overview
3.5.2 Control Statements

3.5.2.1 Primary Input Stream

3.5.2.2 Secondary Input Stream

3.5.2.3 General Description
3.5.2.3.1 Format
3.5.2.3.2 Valid Control Statement Names
3.5.2.3.3 Field Types
3.5.2.3.4 Delimiters
3.5.2.3.5 Free-Field Form
3.5.2.3.6 Comments
3.5.2.3.7 Continuation

3.5.2.4 Specific Descriptions
3.5.2.,4,1 ANQPP
3.5.2.4.2 ARCHIVE
3.5.2.4,3 ATTACH
3.5.2.4.,4 CALL
3.5.2.4.5 CONTINUE
3.5.2.4.6 CREATE
3.5.2.4.7 DATA
3.5.2.4,8 DETACH
3.5.2.4.9 DRgP
3.5.2.4.10 ENDCS
3.5.2,4.11 END*
3.5.3.4.12 EXECUTE
3.5.2.4,13 GPTE
3.5.2.4,14 IF

3.5.2.4.15 L@AD

3.6

3.5.3 Executive

3.5.4 Execution
3.5.4.1
3.5.4.2
3.5.4.3
3.5.4.4
3.5.4,5
3.5.4.6
3.5.4.7
3.5.4,8

3.5.5 Auxiliary
3.5.5.1
3.5.5.2

3.5.6 Hierarchy

TABLE OF CONTENTS

3.5.3.4.16 PARAM

3.5.2.4.17 PR@CEED

3.5.2.4.18 PURGE

3.5.2.4.19 RETURN

3.5.3.4.20 SETSYS

3.5.2.4.21 STARTCS

3.5.2.4,22 TABLE

3.5.2.4.23 UNL@AD

3.5.2.4,24 DATE

Monitor (XM)

Phases

Initialization Phase (XBS)

Primary Edit Phase (XRT)

Control Statement Processing Phase (XCSP)
Functional Module Processing Phase (XFM)
Error Processing Phase (XMERR)
Secondary Edit Phase (XCA)

Normal Termination Phase (XEN)

Error Termination Phase (XXFMSG)
Modules

Fatal Error Message Writer (XXFMSG)
Non-Fatal Error Message Writer (XXNMSG)

Charts

ANOPP Data Base Management

3.6,1 Overview

3.6.2 DBM Control Statements

3.6.3 Data Member Manager

3.6.3.1

- 3.6.3.2

General Description

Subroutine Arguments

3.6.4

TABLE OF CONTENTS .

3.6.3.3 Open Data Member Subroutines
3.6.3.3.1 MMPPRD - Open for Read
3.6.3.3.2 MM@PWD - Open for Direct Write
3.6.3.3.3 MM@PWS - Open for Indirect Write
3.6.3.4 Put Subroutines
3.6.3.4,1 MMPUTR - Put Record
3.6.3.4.2 MMPUTW - Put Partial Record - Words

3.6.3.4.3 MMPUTE - Put Partial Record - Elements

3.6.3.5 Get Subroutines
3.6.3.5.1 MMGETR -~ Get Record

3.6.3.5.2 MMGETW - Get Partial Record Words

3.6.3.5.3 MMGETE - Get Partial Record - Elements
3.6.3.6 Positioning Subroutines
3.6.3.6.1 MMPPSN - Position to a Specified Record
3.6.3.6.2 MMREW - Rewind Data Member
3.6,3.6.3 MMSKIP - Skip Records
3.6.3.7 MMCL#S ~ Close Data Member Subroutine
3.6.3.8 Auxiliary Modules
3.6.3.8.1 DBM Error Message Writer (MMERR)
3.6.3.8.2 Validate Data Unit and Member (MMVUM)
3.6.3.8.3 L@AD CS Error Message Writer - XLDERR
3.6.3.8.4 UNL@AD CS Error Message Writer XUNERR
3.6.3.9 Hierarchy Charts
Data Table Manager
3.6.4.1 Overview
3.6.4.2 Open Data Table Subroutines
3.6.4.2,1 TMPPNA - Open with Alter Permission
3.6.4.2.2 TM@PN - Open without Alter Permission
3.6.4,3 TMCI@S - Close Data Table Subroutine

3.6.4.4 TMTERP - Data Table Interpolation
viii

Dynamic
3.7.1

3.7.2

3.7.3

3.7.4

3.7.5
UPDATE

3.8.1

3.8.2

3.8.3

3.6.4.5

3.6.4.6

3.6.4.7

TABLE OF CONTENTS

Data Table Building

6.6,4.5.,1 TMBLD1 - Build Data Table Type 1

Auxiliary Modules

3.6.4.6.1 DTM Error Message Writer (TMERR)

Hierarchy Charts

Storage Management System (DSM)

Overview

Dynamic Storage Structure

3.7.2.2

3.7.2.2

3.7.2.3

Dynamic Storage Control Words

Reserved Block Control Words

Free Stofage Control Words

DSM User Modules

3.7.3.1
3.7.3.2
3.7.3.3
3.7.3.4
3.7.3.5
3.7.3.6
3.7.3.7
3.7.3.8
3.7.3.9
Auxiliary

3.7.4.1

DSMB
DSMF
DSMG
DSMI
DSML
DSMQ
DSMR
DSMS

DSMX

Determine Dynamic Storage

Free a Reserved Block of Dynamic Storage

Get a Block of Dynamic Storage

Initialize Dynamic Storage

Lock Dynamic Storage

Query to Obtain Size of Largest Available Block
Release Dynamic Storage

Swap IDX Variables

Expand a Reserved Block

Modules

DSM Error Message Writer (DSMERR)

Hierarchy Charts

Overview

Control Statement

Member Level Directives

3.8.3.1

3.8.3.2

General Format

-ADDR

ix

3.9

3.8.4

3.8.5

3.8.6

3.8.7

3.8.8

3.8.9
General
3.9.1

3.9.2

TABLE OF CONTENTS

3.8.3.3 -CoPY

3.8.3,4 -OMIT

3.8.3.5 -CHANGE

Record Level Directives

3.8.4.1 General Description
3.8.4,2 ~INSERT

3.8.4,3 -DELETE

3.8.4.4 -QUIT

Format Summary

UPDATE Output Description
3.8.6.1 Header Section
3.8.6.2 Directive Echo Section
3.8.6.3 Summary Section
3.8.6.4 CHANGE Member Section
3.8.6.5 ADDR Member Section
Error Philosophy

Auxiliary Modules

3.8.8.1 UPDATE Error Message Writer (XUPERR)

Hierarchy Charts
Utilities
Overview
Reference List
3.9.2.1 ALPHA
3.9.2,2 DIGIT
3.9.2.3 DVALUE
3.9.2.4 IAND
3.9.2.5 ICD
3.9.2.6 ICIL
3.9.2.7 IC@MPL

3.9.2.8 IDATE

3.9.2.9

3.9.2.10
3.9,2,11
3.9.2.12
3.9.2.13
3.9.2.14
3.9.2.15
3.9.2.16
3.9.2.17
3.9.2.18
3.9.2.19
3.9.2.20
3.9.2.21
3.9.2.22
3.9.2.23
3.9.2.24
3.9.2.25
3.9.2,26
3.9.2,27
3.9.2.28
3.9.2.29
3.9.2.30
3.9.2 31
3.9.2.32
3.9.2,33
3.9.2.34
3.9.2.35
3.9.2.36
3.9.2.37

3.9.2.38

ILgC
ILSHFT
IMASK
IgR
IRSHFT
ISHIFT
ITIME
IVALUE
IX@R
MEMNUM
NUMTYP
NWDTYP
RVALUE
XASKP
XBSRIN
XBSRRD
XBSRRS
XCR
XCRWC
XEXIT
XFAN
XFETCH
XEMTQ
XINC
XGETP
XMPVE
XMPRT
XPAGE
XPK

XPKM

TABLE OF CONTENTS

xi

3.9.2.39
3.9.2.40
3.9.2.41
3.9.2.42
3.9.2.43
3.9.2.44
3.9.2.45
3.9.2.46
3.9.2.47
3.9.2.48
3.9.2.49
3.9.2.50
3.9.2.51
3.9.2,52
3.9.2.53
3.9.2.54
3.9,2.55
3.9.2,56
3.9.3 Auxiliary
3,9.3.1
3.9.3.2

3.9.4 Hierarchy

TABLE OF CONTENTS

XPLAB
XPLABQ
XPL;NE
XPUTP
XSORTF
XST@#RE
XTBDMP
XTRACE
XT1AL
XT1FV
XT2AL
XT3FL
XT3FV
XT3IF
XT3LK
XUNPK
XUNPXM
XUNPKT
Modules
Utility Fatal Error Message Writer (XUFMSG)
Systems Tables Utility Error Message Writer (XTBERR)

Charts

L. MACHINE DEPENDENT INFORMATION

4.1 OVERVIEW

4,2 CDC CYBER NOS with the NASTRAN Linkage Editor

4.2.1 Installation Procedures

4.2.1.1 Generate An Executable File

%4.2,1.2 Modify An Existing Module

4.2.1.3 Temporarily Install A Dummy Functional Module

xii

TABLE OF CONTENTS -

4,2,1.4 Permanently Install A New Functional Module
4,2.2 Execution Procedures

4.2,2.1 Program Loading

4,2,2,2 Data Interfaces
4,2,3 CDC CYBER NOS Dependency

4,2.3.1 Standards Violations

4,.2,3.2 Operating System Dependant Subprograms

4,2.3.3 I/0 Interfaces

Appendix A. Glossary
Appendix B. Index to Module Names
Appendix C. Iudex to Error Message Numbers

Appendix D. References

xiii

PAGE STATUS LOG

Most Recent
Date Changed

Most Recent

Most Recent

Date Changed

Page No.

Date Changed

Page No.

Page No,

O NMITULNLO~NDONOHNM OCr N MV ONDOINOEHNMTI O>® O ONmM
11 1 1 | L |
33333333333333&.“nﬁuuuuqu.nu.uu.n&uu.uu..uvu.nu.hwuuuuuuksssssssssssss

333

O NMIFTWOWO o Ot NMITOLO~ON
1.23u.567891111111123123u5678911123“56123“567891111111111
L R N N A N N O A R A R R R R e e e R e R R Y e N N e I N U T R e [|
3333333333333333““hw555555555512222223333333333333333333

e o o

2222222222222222222222222222233333333333333333333333333

— O ONMDITW OISO

111212112312123“561.1123455799111111111

o] () [R L A A L T A 1 = T T IR O I | UNSURURORU)

ol o ord o P> 112334n»566677888888911222222222222222222
A B Hed e X el d > D . . e .

.11.l.lvvvvixxxxxxx111111111111111111112222222222222222222

xiv

PAGE STATUS LOG

Most Recent

Most Recent

Most Recent

Date Changed

Page No.

Page No. Date Changed
fage Jo. late -nanged

Page No. Date Changed
sage Y. late Lhanged

.

.6-30
.6-31
.6-32
.6-33
.6-34
.6-35
.6-36
.6-37
.6-38
.6-39
.6-40
641
.6-42
.6-43
.6-44
.6-45
.6-46
.6-47

o O O NMITHO~VDONOAHND S

B B e T T T TSI
i1 '

666777777777777777777777777

[ee]
u.
6

6-49
.6-50
.6-51
.6-52
.6-53
.6-54
.6-55

[Ye)
5
6

6-57

333

o Nt CrNOMFTOLONDONOINMIWWOE OO

OV OEHNMI N OB OANNMITNDNOEDDNOANNDTVLVOEOFDNOANNMITVONDDDOANM TN OSSO

Y N T T I T I I I I I T T I eI eIeYY
] 1 [} [1 1 [}

555555555:—.“555

333

Xv

l

ORIGINATL, PAGE IS
OF POOR QUALI

PAGE STATUS LOG

Most Recent Most Recent

Most Recent

Date Changed

Page No.
B.1-13

Date Changed

Page No.

3.9-18

Page No. Date Changed

S w O NMIS N W
1 1 "t |
11111111111111111111

MBMO0O0UU0UUU0UUUSUUOA

QO VNN IT VOSSR DNO N O N®DINOT-ODO Ot N
HANNNNANNNNNNOOD AA NG T DO OO et vl o oed o TTONDO I WO OOl
L R e Nt A R A N N R A N T S T T T I R A N O R R L O T T T T T O I)
33333333333333““4&.4&.“&.nw“u.hw|4.u.."wu““b.nﬂAAAAAAAABBBBBBBBBBBB

16
17
18
19
-20
~21

N OSSO O N O A NM NI HLONDODOO Ot NM T WY

NNONANNNNNDANDTONDOS OO A e A

L L L e s S e Y O I e .._.___.___-_-._.__.)

7777777788888888888888888888888888888ngggggggggggggggg
. o .

333

xvi

INTRODUCTION

1.1 PROGRAM OVERVIEW

The Aircraft Noise Prediction Program (ANOPP) was developed to be a repository for
current and future approaches to computerized study of aircraft noise. Today's methods
are highly empirical; tomorrow's will be analytical. To the developer of new technology
and prediction methods, ANOFP is where new algorithms and code can be deposited as a new
or replacement part of an integrated system. To the planner or user, ANQOPP is the
source of current information and state-of-the-art prediction methods at selected

levels of complexity for a suitably described model.

With these objectives in mind, the fundamental design requirements of the system

were defined as:

1. flexibility for the addition, replacement, or removal of prediction
methods
2. user control for selective and effective use of the various methodologies

The design requirements are met by separating executive functions from noise
prediction functions. Thus, all of the noise prediction applications technology is con-

tained in functional modules.

The executive system provides for program initialization and interface with the
host computer operating system. It provides for user control of execution via a control
statement language processor. It provides storage management and data management for
the functional modules. It provides error handling and exit procedures to the host

operating system.

The remainder of this chapter will outline the characteristics and motivations for
several significant parts of the executive system. The Interfaces and interactions
between the executive and functional modules will be shown. The rest of this Programmer's

Manual will provide more individual detall of the entire executive system.

11.1-1

INTRCDUCTION.
1.2 FUNCTIONAL MODULE CONCEPT

A functional module is a logically independent group of subprograms or modules which
performs noise prediction functioms. The size varies with the number and type of modules

required for the functions to be performed.

A functional module is called into execution by the ANOPP executive system upon user
request via a control statement. At the time of request the specified functional module is
loaded into core and execution is begun. Upon completion the functional module returns
execution control to the ANOPP executive system. An executive module is brought into the
core space previously occupied by the now completed functional module to process the
remaining control statements supplied by the user. Upon encountering a subsequent func-

tional module regquest, the process is repeated.

Thus a functional module is core resident if and only if it is being executed at user
request. It is transient and shares the same core space with other functional modules as
well as executive modules.

General characteristics of functions include:

1. Functional modules are independent.

2. Functional modules do not call one another directly.

3. Functional modules are called from and return control to the executive manager.
4, Funcfional modules request and release storage through a dynamic storage manager.

5. Functional modules input and output data through a data base manager.

1.2-1

INTRODUCTION

1.3 CONTROL STATEMENT CONCEPT

Just as the loading and execution of ANOPP is controlled by a set of job control cards
monitored by the host computer operating system, so is the sequence of module executions
within ANOPP controlled by a set of executive control statements monitored by the ANOPP
executive management system. The control statements interpreted by the ANOPP executive

manager provide:

1. execution sequence control with branching
2. exchange of parameters among the user, the executive manager, and the functional
modules

3. update capabilities for the ANOPP data base

4. the ability to load/unload various parts of the ANOPP data base.
The format for an ANOPP control statement is:
label control statement name operand(s) § optional comment(s)

The structure and operand(s) appropriate to specific control statements can be found
in Section 3.5.2 of this manual. Several general characteristics are of interest here.
The label field provides tag addresses for looping and branching. The operands provide
parameters for control of conditional branching and exchange of information among the user,
the executive manager, and the functional modules. Control statements are terminated with
a dollar sign ($); otherwise, they are assumed to be continued on the next card image. A
1imited number of continuation cards are permitted. Optional comments may follow the

terminal character.

A set of control statements in card image format is taken from the primary input
stream, edited and stored in edited format on the data base. The statements are then
executed one at a time from this edited set. A collection of control statements in un-
edited or card image form may be saved in the ANOPP data base and subsequently retrieved by
a CALL Control Statement in a later run. At the time of first execution of a CALL control
statement, a specified pre-stored set of card image control statements is retrieved,

edited and executed from beginning to end. Upon completion of the called set, execution

1.3-1

INTRODUCTION

then continues with the control statement following the CALL. The control statements in
edited form are saved for subsequent execution if required. The called set may itself

contain further CALL statements in a cascading series of expansions, but the user must be
careful to avoid an infinitely recursive CALL loop. While not currently implemented, the
capability to interactively enter and interpret single control statements in a card image

set is not precluded in the present design of the executive system,

1.3-2

INTRODUCTION

1.4 DYNAMIC CORE CONCEPT

Dynamic core is that portion of machine memory available within the program's region
or field length that is not occupied by permanent or transient routines. This area is
managed by a part of the ANOPP executive known as the dynamic storage manager. The total
size of this dynamic core area varies directly with the field length available during an
individual ANOPP execution. The capability provided by the dynamic storage manager is
similiar to variable dimension arrays in FORTRAN and permits module writers to vary the
size of data areas and to adjust their solution algorithms depending on the amount of core

available.

The total dynamic core area is divided into two parts: a Global Dynamic Storage area
and a Local Dynamic Storage area. Global dynamic storage is of fixed length during a
single ANOPP execution and resides at the end of the program's region or field length.
Local dynamic storage is of varying length and is bounded by the longest current transient
routine on one side and by the start of global dynamic storage on the other side (see
Figure 1). The dynamic storage manager allocates and de-allécates various size blocks up
to the limits of the reserved space available for both local and global storage. Indivi-
dual blocks of core within dynamic storage are defined by their starting location and
length. The starting location is defined as an index relative to the variable IX in a
fixed common block /XANEPP/ that resides near the beginning of the program's region. The
global storage area is available throughout a single ANOPP execution and is generally used
for executive tables and control blocks required by the executive system. The local
storage area is reserved And released during individual executive or functional module
executions and is generally available as scratch space during the execution of these
transient routines. While functional modules may use available space in global storage
during their time of execution, they can not use global storage blocks as a means or

mechanism for transmitting information or data to other functional medules directly.

ORIGINAL, PAGE, 15

OF POOR QUALITY -

RA+ 0

+ local boundary

+ global boundary

+ FL

Figure 1,

INTRODUCTION

permanent modules
/XANPPP/
Executive Monitor
Dynamic Storage Manager
Data Base Manager

transient module(s)

local
dynamic core

global
dynamic core

1.4-2

Layout of Core Storage.

INTRODUCTION
1.5 ANOPP INPUT/OUTPUT

The Input and Output files from the host computer operating system are readily
available to the routines of the ANOPP executive system. They are less easily accessible

by the functional modules.

Functional modules receive and transmit their primary input/output via the ANOPP data
base and the member manager and table manager facilities. There is no provision for
reading directly from the host system input file. Information may be written directly to
the host system output file; however, this should be done in conjunction with the execu-
tive system paging routines (XPLINE, XPAGE, etc.) to insure accurate line counts and page
headings. Functional modules can also exchange limited numbers of parameters via the
PARAM control statements, the executive parameter functions (XGETP, XPUTP, XASKP), and the

user parameter table.

Since functional modules need information from the ANOPP data base to operate, the
capability to place information in the data base must be provided. Thus, three control
statements, DATA, TABLE, and UPDATE, provide means for reading cards from the primary
input stream and transferring the information into the ANOPP data base in various selected

formats.

1.5-1

INTRODUCTION

1.6 EXECUTIVE MANAGEMENT

The Executive Management System consists of the main executive monitor which controls
the sequence of operation of the execution phases and the submonitors which control the
operations within each phase. The first program executed is the executive monitor (XM)

which immediately calls the XBS module to perform ANOPP system initialization.

The executive bootstrap module (XBS) first checks to see that the required initial
ANOPP control statements exist and are positioned correctly. XBS then initializes the
global portion of dynamic storage via the dynamic storage manager, and executive and data
base management tables and directories are allocated and initialized in dynamic storage.
XBS returns to ¥M which calls the XRT module to edit the set of ANOPP control statements
in the primary input stream and write the edited set on the data base to be executed later

by the executive control statement processor module (XCSP).

The executive module XRT edits the set of control statements from the primary input
stream in one pass and writes them to the ANOPP data base in an edited control statement
format that is structured for input to the executive control statement processing phase.
In the edit phase, the syntax of each control statement is checked and labels are matched
with their corresponding branching statements. The edit phase does not "execute! the
control statements, but simply transforms them from card image to "executable" format. .
Then, the later processing modules can act more efficiently on the executable form that is
well structured syntactically and contains label tables for efficient branching capa-
bility. Several control statements have optional input following them. These control
statements are DATA, TABLE, and UPDATE; and their input is terminated by an END¥* control
statement before the next regular control statement. In these cases, the XRT module puts
such input data on the data base and provides linking information so that this data can
be retrieved during execution processing. The edit phase is complete and XRT returns to
XM when an ENDCS card is found in the input stream. XM next calls the executive control

statement processor module (XCSP) to execute the edited control statements.

1.6-1

INTRODUCTION

The control statement processing module retrieves from the data base the edited form
of the first control statement in the primary input stream and calls upon an appropriate
executive module to process it. Upon process completion, control returns to the XCSP
module which continues with the iterative pattern of read/process until the pattern is
terminated by the ENDCS statement. The ENDCS indicates the set of control statements
supplied by the user in the primary input stream has been completely executed and ANOPP
should be terminated. The module which is called by XCSP to process the ENDCS thus per-

forms normal termination procedures for ANOPP and does mnot return to XCSP.

XCSP may be interrupted by either an error or a request for execution of a functional
module via the EXECUTE control statement. In these two cases, control returns from XCSP
to the executive monitor to determine what action is to be taken next. In all cases, the
XCSP module remains in control and cycles through the read/procéss iteration for each
control statement encountered. It is during this processing phase that the pre-stored set
of control statements referenced by a CALL control statement is edited and processed
before continuing with the next control statement. The edited form of the called control
statement is written onto the data base and is available for subsequent retrieval. Thus
editing is done only once at the first execution of the CALL statement. Any looping to
re-execute the CALL statement will not cause redundant editing but only re-execution of

the previously edited control statements.

When control returns from XCSP to XM, either error processing or functional module
execution is indicated. If error processing is indicated, XM calls the error module XMERR
to perform action according to procedures discussed in Section 1.10. Regardless of action,
XMERR always returns to XM upon completion. If functional module execution is indicated,
XM calls XFM to control the loading, execution, and clean-up processes. The functional
module can make use of any and all services of the dynamic storage manager, the data base
manager, and the executive utilities. The only restriction is that the funcfional module
cannot terminate abnormally, but must return control to XFM and thus to XM. XFM will
perform some clean-up procedures if the functional module has neglected to release or

close dynamic storage areas or data base structures. Control then returns to XM.

1.6-2

EXECUTIVE MANAGEMENT

When error processing or functional module execution has been completed, XM again
calls the executive control statement processor module (XCSP) to continue executing the

control statements.

In summary, the executive management system first performs bootstrap initialization
and edits the primary input stream control statement set. Then it cycles among control

statement processing, functional module execution, and error handling until completion.

1.6-3

INTRODUCTION
1.7 DYNAMIC STORAGE MANAGEMENT

The ANOPP dynamic storage management system is a collection of modules that perform
specific operations on the dynamic core areas discussed earlier. These modules are
directly callable by the ANOPP executive and functional modules. Local dynamic storage
and global dynamic storage are treated separately but equally by the modules of the
dynamic storage management system. However, the modules of the executive management
system do not treat them equally. The global dynamic storage area is initialized by the
XBS module and never released during the rest of an ANOPP execution. Local dynamic stor-
age on the other hand is initialized and released repeatedly by various executive modules
and each functional module that makes use of it. For both types of storage, the remaining
functions of dynamic storage management can be performed only during the time between

initialization and release.

The basic function of the dynamic storage manager is to allocate and de-allocate
blocks of storage within the initialized dynamic storage areas. Each block is located by
an index with respect to the variable IX in a fixed common block /XAN@PP/. This index is
generically referred to as the IDX of the block. When a dynamic core block is assigned to
a calling module, éhe index (IDX) and length (LEN) are returned to the module. The
module can then reference any location within the block by addressing between the limits
of IX (IDX) to IX (IDX+LEN-1). Alternatively, the module can pass the argument IX(IDX)
and LEN to a submodule that receives them as an array A of length LEN and can address any

location within the block from A(l) to A(LEN).

The initialization of a dynamic storage area consists of setting the boundaries with
control words and declaring the remaining area to be one large free block. The size of
the free block is reduced as reserved blocks are requested and assigned to calling modules.
Eventually a reserved block will be freed by a calling module and it will be linked into a
chain of free blocks along with the now reduced original free block. This process of
reserving, reducing, freeing and chaining goes on until a request is made for more re-

served space than is contained in any one of the individual blocks in the free chain. At

1.7-1
ORIGINAj}L, PAGE IS
OF POOR QUALITY

INTRODUCTION

this time a storage move takes place to consolidate all the fragmented free blocks into
one large free block, unless storage has been locked at the request of a calling module.
The IDX's of all relocated reserved blocks are updated accordingly. If the requested
space is not available, the calling module is informed that the length of the block
assigned is zero. In this case the calling module may free some blocks and try again, may
request less space, or may request space in the other (local/global) storage area. When

all else fails, the user can rerun the job with more field length.

1.7-2

INTRODUCTION

1.8 DATA BASE MANAGEMENT

The ANOPP data base is a hierarchial structure from top to bottom and consists of:
LIBRARIES
UNITS
MEMBERS
RECORDS

ELEMENTS
WORDS

A library is a collection of units, a unit is a collection of members, a member is a
collection of records, a record is a collection of elements, and an element is a collec-

tion of words.

Paralleling the hierarchial data base is a hierarchial data base management system
consisting of directories, control statements, and subroutines that operate on individual
parts of the data base or between adjoining parts. For example, the CREATE control state-
ment establishes a new data unit while the UNL@AD control statement forms units or subsets

of units into libraries. An overview of this parallel structure is given in Figure 1.

Units are e@uivalent to files in the host operating system. The Data Unit Directory
(DUD) contains a table of correspondence between internal ANOPP data unit names and external
host operating system file names. The collection of data units named in the DUD defines
the current data base for ANOPP execution. It consists of those data units that have been
" created, attached, or loaded up to this point, and that have not yet been detached or
purged. The physical external file for a data unit contains a unit header, a member
directory of current members on the unit, and the actual members and records themselves.

For an attached, created, or loaded data unit in the DUD, a copy of its unit header is
kept as part of its entry in the DUD. An operating system I/0 buffer in global dynamic

core is also associated with a data unit's external file.

1.8.1 Member Manager

Below the level of unit is a member. A member and its substructures, records, ele-
ments, and words, are managed by a set of Member Manager Subroutines. These routines are

callable from both executive and functional modules. A member is a collection of records

1.8-1

INTRODUCTION

Data Base Control
Structures Directories Statements Subroutines
LIBRARY LuT L@AD, UNL@AD
LFD
LLT
LUH
LDR
INIT DuUpD CREATE, PURGE
DMD ATTACH, DETACH
DUH UPDATE
MEMBER MCB -ADDR MM@PWS
DMH -COPY MM@PWD
DUH ~CHANGE MM@PRD
RD -PMIT MMCL@S
AMD MMREW
RECORD RS -~-INSERT MMGETR
-DELETE MMPUTR
-QUIT MMSKIP
MMP@SN
ELEMENT FsI MMGETE
FST MMPUTE
WORDS MMGETW
MMPUTW

Figure 1. Data Base and Data Management Parallels

1.8-2

DATA BASE MANAGEMENT

of the same format. Records are not formatted in the sense of format conversion as with
FORTRAN coded records. Rather, the format indicates the structure of the records by
giving the types of the record elements. Element types specify whether the data is inte-
ger, real, complex, single, double, or an alphanumeric string. The types are equivalenced
to word lengths such as one word for an integer and four words for a complex double.
Record reads and writes are really copying of binary data from/to external physical files
to/from machine memory. The associated format provides a module writer with information

for accessing individual record elements within sequential FORTRAN arrays.

" When a data member resides on a physical external file, it contains a member head
followed by the records of the member. The member header contains record format informa-
tion as well as a record directory and subdirectory of member records relative to the
beginning of member. When a data member is open for I1/0, its name is included in an
Active Member Directory (AMD), and a Member Control Block (MCB) is assigned in Global
Dynamic Storage. These entries point to the DUD entry for the unit on which the member
resides. The DUD entry points to the last operating system file buffer for the external
file. All of these thread back to a NAME array that is used in every Member Manager call

for action on the member.

The Member Manager routines provide capabilities to open, write, read, position, and
close a member and its records. All calls to Member Manager subroutines provide a three
word NAME array to indicate the data unit name and member name and to hold a pointer to
the MCB. When a member is opened to read or write, a Member Control Block in dynamic
storage is assigned and pointed to by the NAME(3) argument. The MCB points to the Active
Member Directory entry for the open member and the Data Unit Directory entry for the unit
on which the member resides. The Active Member Directory points both to the Data Unit
Directory entry for the unit/member named and to the NAME argument supplied in the open
call. The Data Unit Directory points to the External File Buffer (EFB) for the operating
system file equivalenced to the data unit. See Figure 2, Diagram of Member Manager Di-

rectory Connections.

1.8-3

INTRODUCTION

suotioauuc) Laciosarq asfeuel asquwsy Jo weaBerq g aandTj

i

3

833

ana

T
s

Wi

O

Vi,

awy

THYN

1.8~4

DATA BASE MANAGEMENT

All the records of a member occupy contiguous space on a data unit. Thus, when a
member is open to write either sequentially or randomly, it often is necessary to actually
write the records to a scratch unit until the member is closed. At that time all the
records on the scratch unit are copied to the member's space on the real unit and the
scratch unit is released. It is permissible to write records directly to a unit/member,

but only one member at a time may be open for writing directly to the same unit.

When a member is opened to read the following actions take place. The unit name is
found in the DUD and its Member Directory is read into core through the External File
Buffer (EFB). If the member is found on the unit, then a Member Control Block is assigned
and the Member Header is read into the MCB area. A member open to read entry is made in
the Active Member Directory. With all these connections established at open time, the
Member Manager is now ready for subsequent read requests to tramsfer data from the exter-
nal file into a central memory record holding area. Records can be read in whole or in
part with partial records specified by either word length or number of elements. Members
can be rewound and records can be read sequentially or randomly with the additional
capability to skip forwards or backwards over records or to position directly to a speci-
fied record. When closed, the MCB is released and if there are no other members currently
open on the same data unit, the EFB is released also. The AMD entry is closed for reading,
and if the member is not currently open to write also then the AMD entry is released. A
member may be 6pen to read and write concurrently since the member to be read must be an
existing member in the current Member Directory for the data unit and the member open to
write will go to a new place on the data unit and will not modify the Member Directory for
the unit until the write process is closed. Since there is no re-write-in-place, read

will continue to process the old version of a member while the new version is being written.

1.8.2 Table Manager

An ANOPP data table is a one record member. For this special class of members, the
record holding area in dynamic storage into which the one record of the member is read is

reserved and managed by the ANOPP Table Manager. The table name (unit/member) is held in

1.8-5

INTRODUCTION

a Data Table Directory along with a pointer to the table (record) area in global dynamic
storage. Thus, these tables can remain in core under control of Table Manager during the
execution of several functional modules. Like other units/members, the units/members
whose one record constitutes a table cannot remain open after execution of a functional
module. It is only the table data in the record holding area that remains in core under

control of the Table Manager.

When a table is first opened, the unit/member is opened, the table record is read
into core, and the unit/member is closed. The table name and a pointer to its core
location is entered into the Data Table Directory. When the table is closed by the
module that opened it, the table is logically closed in the DTD. A subsequent request to
open the table will open it logically in core from the DTD. A request to close it will
again close it logically. If a functional module opens a table with the intention of
altering it, then it is rewritten to its real unit/member at the same time that it is

logically closed in core.

The Data Table Directory holds a fixed number of tables in core -- some open, some
closed. A request to open a table is first satisfied by opeﬁing the table if it is found
in a search of the closed table chain in the Data Table Directory. If the table is not
closed in core and available for re-opening, then an empty entry must be found in the DTD
so that the unit/member/record for this table can be read into core and open member status
can be entered into the DTD. If there are no free entries in the DTD, then one of the
closed table entries will be released to make room for the new table entry. A subsequent
request to open the table that was released will result in a fresh copy being read into
core and re-entered in the DTD. If the DTD is full of open tables only, then no new
tables can be entered and the job must be re-run with a new parameter value (NAETD) on the
ANPQPP control statement to initialize a DID large enough to accommodate all the tables

expected to be simultaneously open during the run.

INTRODUCTION

1.9 UPDATE

An update capability has been provided for manipulating the ANOPP data base by
reconfiguring the members of a unit and/or changing the records of a member. This capa-
bility has been provided at the ANOPP control statement level so that a user can control
the outcome of an ANOPP execution by adjusting the data base prior to executing a func-

tional module or unloading units of the data base to a sequential library.

The update capability is patterned after the structured organization of the data
base. For modifying data units, there are record level directives to add, copy, omit, or
change a member. For modifying data members there are record level directives to insert
and/or delete records. This capability is non-destructive. In no case are the records or
members of a unit rewritten on the same unit. In all cases update executes from an old
data unit to a new data unit, or to a new data unit alone if no old unit exists. Update
can operate in full or partial mode. In partial mode, only those members mentioned on
update directives are processed from the old to the new data unit. In full mode, all
members are processed.

One use of update is to reconfigure data units. This may be done to reduce wasted
space on physical storage devices or to reorganize or combine members on a data unit in a
manner more conducive to efficient execution by the intended ANOPP user. Another use is

to create tempdrary data for use during an execution.

1.9-1

INTRODUCTION

1.10 ERROR PROCESSING AND TERMINATION PHILOSOPHY

ANOPP may terminate either normally or abnormally. Normal termination occurs when
the ENDCS control statement is processed. Abnormal termination occurs when a fatal error

inhibits further meaningful execution is encountered.

Abnormal terminaticn procedures are invoked whenever a fatal error is encountered by
any executive module. Execution control is not passed back to the calling module by a
return but instead a call is made directly to one of several error message modules. After
printing an informative message, the message module calls the ANCPP abort module, XEXIT,
to perform abnormal termination procedures and to terminate execution. Only executive
modules have abort privilege. A functional module may never terminate ANOPP execution
directly. However, abnormal termination may occur indirectly when a functional module is
in core if an executive module, called to perform a service function, detects a fatal

error. Abnormal termination will then occur as described.

Errors which do not inhibit further execution are called non-fatal and are detected
by either executive modules or functional modules. All errors detected by a functional
module are non-fatal to the executive system. If a module is able to correct the error
situation and continue processing, no further action is required. If, however, the module
is unable to successfully complete its function, return is made to the executive management
system with the executive error parameter NERR set to .TRUE. A functional module must not

terminate abnormally but must return control to the executive management system.

If an error occurs during either the initialize or edit phases of executive manage-
ment, then execution continues and ANOPP is abnormally terminated upon completion of edit.
Thus all errors in card image input are detected in one ANOPP execution. If an error
occurs in later phases of processing control statements or execution of functional modules
a return is made to the controller XM with NERR set as previously indicated. Subsequent
action depends upon the system parameter JCON. Processing will continue with either the

next control statement or the first encountered PRACEED control statement.

T, 1.10-1

STANDARDS

2.1 SCOPE

These standards define the requirements for preparing software for the Aircraft Noise
Prediction Program (ANOPP). It is the intent of these standards to provide definition,

design, coding, and documentation criteria for the achievement of a unity among ANOFP

products.

These standards apply to all of ANOPP's standard software system. The standards as

expressed in this publication encompass philosophy as well as techniques and conventions.

2.1-1

STANDARDS

2.2 DESIGN

2.2.1 Module Standards

The Aircraft Noise Prediction Program will utilize the concepts of "composite design"
for program structure. Composite design involves the construction of a program in terms

of modular structure and module interfaces.

A module is a group of program statements that can receive input data, perform one
or more transformations on that data, and return output data. The modules for ANOPP will
have the following general characteristics.

1. The executable and comment statements for the module can be listed contiguously.

2. The statements are enclosed by identifiable boundaries; e.g., in FORTRAN,
from a PROGRAM or SUBROUTINE card to an END card.

3. The statements are considered to be a discrete and identifiable entity that can
be referenced from other parts of the program only by the module name or its
single entry.

4. The module can be referenced from other parts of the program only by the module
name or its single entry.

5. The module will have a single, common entry and a single, common exit.

6. The module can reference or CALL other modules, suspend its execution upon
encountering the CALL statement, and resume execution with the next immediate
statement.

7. All called modules must return to their caller at the statement immediately

following the CALL statement.

A module has three attributes: function, logic, and interfaces. For a composite
design, a module should be described by its functions; i.e., what happens when the module
is called. This characteristic can be described as data flow through the program A
functional description of a module should contain a verb, such as, "Find Largest Block".
A module's logic describes the internal working or data flow within a module. Another

attribute of a module, interconnection or interface, Is concerned with module communication.

L 2.2-1

STANDARDS

ANOPP modules will be designed to be as functionally independent as possible with

minimum interface. Reliability, ease of understanding, and ease of maintenance are the

objectives of these standards.

Guidelines to be followed to achieve the standards of modularity for ANOPP are:

1.

2.

Simplicity - Use the simplest solution, design and/or interface that is possible.
Design efficiency - Design a module to solve the current problem efficiently;
i.e., never design a module to do more that it is required to do.
Aligned control and effect - Align modules and decisions in modules so modules
that are directly affected by a decision are beneath and controlled by the
module containing the decision.
High strength - Maximize binding, the relationships among the elements of a
module. For high strength or binding modules should:
a. have all elements related to the performance of a single function,
b. have a single entry and a single exit,
c. have a function which is easy to describe,
d. be independent from other modules,
€. be unsusceptible to errors from complex design and coding,
f. be usable by other programs, and
g- be modifiable without affecting other modules.
Low interconnection - Minimize coupling, the relationships between modules.
To attain the desired low interconnection or loose coupling, modules should:
a. not directly reference other modules to:

(1) modify a program statement,

(2) refer to data in another module,

(3) branch directly into another module, or

(4) physically reside within another module;
b. not pass control information to other modules;
¢. use only the following types of data interconnections:

(1) argument lists,

(2) common areas, and

2.2-2

DESIGN

(3) data base members.

6. Size - Limit the size of a module to 100 lines of executable source language

statements. Clarity, simplicity, and understanding are related to module

size.

2.2.2 Depth of Design

Program structuring involves an analysis of the problem, the flow of data through the

problem, and the transformations that occur on that data. Equally, it involves identifi-

cation and definition of modules to solve the problem. The phases of program structuring

involve:
1. definition of the structure of the problem,
2. identification of the input and output in the problem,
3. identification of the points of entry and exit for data, and

4. reduction of the problem into a set of subordinate modules.

A graphic representation of a module and subordinate modules will result in a hier-
archy of modules. The graphic representation is called a “hierarchy chart" and should be

drawn to illustrate the problem's solution.

After the problem has been reduced into a set of subordinate modules, the process is
repeated viewing each subordinate module as an independent problem that can be reduced
into other subordinate modules. Some rules to follow are:

1. The entire structure should be constantly reviewed to take advantage of modules

that are identical.

2. A module must be completely analyzed before its subordinates can be analyzed.

3. The order in which modules at the same level are analyzed and reduced is not

important. It is not necessary to analyze a module and all of its subordinates

before starting another module.

Conditions for terminating this iterative reduction process are:
1. When a module can be reduced no further into independent functional modules.

2. When further reduction of a module leads to the undesirable attributes of low

2.2-3

STANDARDS

strength and high interconnections; i.e., low binding and high coupling.

3. When the logic of a module can be completely visualized; i.e., usually resulting
in less than 100 executable statements.

4. VWhen further reduction leads to highly specialized, unaligned, and inefficient
sets.

5. When the resulting documentation (Chapin-style charts) can be drawn on two or

less sheets of 8%" x 11" paper. (One page is the desirable objective.)

The final design phase of a module should follow these steps:

1. A Chapin chart should be drawn to illustrate the module's logic structure.

2. Documentaticn should be set down to define the module's purpose, inputs, outputs,
local variables, functions, error conditions, control structures, data base
structures, standards violations, and any additional explanatory remarks.

"This constitutes the first portion of the module's prologue and is intended to
be included with the source statement listing.

3. A "walk through" of the module should be staged by the design team to insure
workability.

4. Pseudo code ;eflecting the logic structure outlined by the Chapin chart should be

completed. This completes the module's prologue.

2.2.3 Logic Structures

All of the ANOPP modules will be logically designed so the execution flow will be
sequential from one logic structure to the next logic structure. ANOPP module design will
use four basic logic structures. Coding of a logic structure may require more than one
executable source statement. No matter how complex the particular structure, upon comple-
tion of its execution, the next structure will be executed. This sequential flow logic is
characteristic of "top-down" design. The four logic structures are defined with tradi-
tional graphics in the following paragraphs for educational value and comparison with the

ANOFP standard Chapin charts.

2.2-4

DESIGN

2.2.3.1 Simple Sequence Structure

2.2.3.1.1 Logical Flow Diagram

statement

statement

2.2.3.1.2 Description

Each statement within the structure is simple in that it performs one basic functionj;
e.g., an assignment of an evaluated expression to a variable or a call to another module

(or subordinate).

2.2.3.2 IF THEN/ELSE Structure

2.2.3.2.1 Logical Flow Diagram

ELSE (False) THERE (True)

condition
Logic Logic
Structure(s) Structure(s)
Block 2 Block 1

)

STANDARDS

2.2.3.2.2 Description

The IF THEN/ELSE structure describes the flow sequence that occurs when there are two
blocks of logic structure(s) and only one block should be executed according to a decision
criteria or condition. The condition is a simple or a complex logical expression which
has a value of True or False. If upon execution the condition is True, the logic struc-
ture(s) of Block 1 (the THEN path) is(are) executed. If the condition is False, the logic
structure(s) of Block 2 (the ELSE path) is(are) executed. When the last logic structure
in the chosen path has been executed, control goes to the next logic structure or state-
ment following the IF THEN/ELSE structure. This logic structure adheres to the "top-down"
design in that the common entry is the point at which the condition is tested and the

common exit leads to the next logic structure.

2.2.3.3 DO WHILE/DO UNTIL Structure

2.2.3.3.1 DO WHILE Logical Flow Diagram

False

Logic
Structure(s)
Block

2.2.3.3.2 DO WHILE Description

A block of logic structure(s) which may or may not be executed one or more times
depending on a given condition is described by the DO WHILE loop structure. The loop
structure adheres to "top-down" design in that the loop is entered at one point and flow

within the loop progresses to one common exit point; i.e., the point at which the condi-

2.2-6

DESIGN

tion is tested. The condition is a simple or complex logical expression which has a value
of Tpue or False. The condition is tested at the beginning of the loop, before the
execution of the logic structure(s) block, and if True, the logic structure(s) is(are)
executed. When execution of the logic structure(s) is{are) complete, control returns to
the beginning of the loop and the condition is tested again. Looping continues until the
condition is False; control then passes to the next logic structure following the DO

WHILE structure.

2,2.3.3.3 DO UNTIL Logical Flow Diagram

Logic
Structure(s)
Block

False

condition

2.2.3,3.4 DO UNTIL Description

A block of logic structure(s) which will be executed one or more times depending on
a given condition is described by the DO UNTIL loop structure. The structure adheres to
the "top-down" design in that the loop is entered at one point and flow within the loop

progresses to one common exit point; i.e., the point at which the condition is tested.

The condition is a simple or complex logical expression which has a value of True or
False. The condition is tested at the end of the locp, after the execution of the logic
structure(s) block, and if False the logic structure(s) block is executed again. This
continues until the condition tested is True; control then passes to the next logic

structure following the DO UNTIL structure.

2.2-7

STANDARDS

2.2.3.4 CASE Structure

2.2.3.4,1 Logical Flow Diagram

condition

condition=condition 1 Logic
Structure(s)
Block 1

condition=condition 2 Logic
Structure)s
Block 2

condition=condition n Logic
Structure(s)
Block n

2.2.3.4.2 Description

The CASE logic structure describes the flow sequence that develops when there are two
or more blocks of logic structures, only one of which will be executed according to a
given condition or decision criteria. The condition when evaluated must have a resulting
value identical to one and only one of the conditions given (i.e., condition 1, condition
2,, condition n). Control will pass to the beginning of the block identified by the
matching condition. Upon completion of the chosen block, control will pass to the next
logic structure following the CASE structure. The CAST structure adheres to the "top-
down" design in that the structure is en:ered at one point, the test condition point, and
after execution of the chosen block, control passes to one common exit and the next logic

structure.

2.2-8

DESIGN

2.2.4 Design Documentaticn

The design phase should result in a description of the structure of the program with
descriptions of the module and intermodule interfaces. For the ANOPP project, the design
phase will result in (1) hierarchy charts of the areas of the program, (2) Chapin charts
with external specifications (medule prologue) for each module depicted on the hierarchy

charts, and (3) pseudo code.
2.2.4.1 Hierarchy Charts

A hierarchy chart will depict the results of the composite analysis process (top-down
reasoning - structural process). This creative process is necessary to arrive at the
modular logic and involves the analysis of the problem, the flow of data through the
problem, and subdivision of the problem into modules that will perform transformations on

the data.

A hierarchy chart depicts each module, the level of the module (order), and the lines
of communication for the module. In its optimal form, a hierarchy chart should be con-
tained on one page (Figure 1). As an area can have several levels of modules, it may be
necessary to place a module with its subsequent levels on additional pages; however, all
subordinate modules on the same level should be placed on the same page. In the example
jllustrated in Figures 2 and 3, five levels of modules are necessary. The submodules ;f
the module "Control to Next Level" (Level 3) could not be depicted on the same page and
were subsequently placed on an additional page. (Note the asterisk in the upper right

corner of the "Control to Next Level" box. This indicates that this module is expanded as

a separate hierarchy)

Each module will have a short title, descriptive of its function, and a name that is

used to reference the module. Module names should be descriptive of the function.

IR G 2.2-9

STANDARDS

waoj dSTseg :3aey) AYyoaeaaTH

*1 sandty

LadLNo

S$S3004d

LNdNI

TOYLNOD

¢ TdN1T

T TIA1

2,2-10

DESIGN

waoj orsed :3idey) AyoaeastH 2 aan313

WIQISNVIL
ans

Z SS5320ud€0S

T $5300¥d40S

|

1ndino

WIOISNVIL

10dLN0

TIAIT
LX3AN OL
*aox&zoo

$S3004d

LAdNT

LNANI

YITTIOYLNOD

H T3IXTT

€ T3A3T

2 TIATI

T TIATT

2.2-11

STANDARDS

wxoj 2Tseqg :3dey) Ayodaedaey

Z ASVYldns

‘g sundiy

T ASYLENS

€ MSVL

g ASVL

T ASVL

TIATT
IX3IN Ol
TOYLNOD

S TaNT

v TIATT

€ TIATI

2.2-12

DESIGN

2.2.4,2 Chapin Charts

A Chapin chart will be drawn for each module depicted on the hierarchy chart. The

drawn Chapin chart will detail the internal logic of the module using simple control

structures. In a structured program module, any program function can be performed using

one of four control structures. The Chapin forms for these structures are:

1. Simple sequence

A
B
2. IF THEN/ELSE
K‘ as=b
else ™ then
X Y
3. Repetition
DO WHILE DO UNTIL
DO WHILE A>B
DO UNTIL A>B
4, CASE
CASE (1) depending on--=----
11 12 I3 ———— In

CASE I is really a generalization of the selection function (IF THEN/ELSE) from a

two-valued to a multi-valued operation.

Any kind of processing, any combination of decisions, and any sort of logic can be

accomodated with one of these control structures or a combination of these contreol struc-

tures. FEach structure is characterized by a single point of transfer of control into the

structure and a single point of transfer out of the structure. The control structures can

be nested and still retain this characteristic.

2.2-13

STANDARDS

A tricky situation, prevalent in current practice, arises when a designer desires to
terminate a repetition block upon encountering a specific condition. If this termination

is diagrammed as illustrated below, it violates the single entry/single exit principle

a=b
else then

atl=a

a=d
DO UNTIL a=e

of structured programming. However, equivalent logic is produced by using a multi-valued

condition in the classical structure as shown below.

asb
else then

at+lza a=d

DO UNTIL a=e or a=b

A program utilizing these control structures tends to have no statement labels. (The
actual implementation of these structures in a non-structured language like FORTRAN will
require the use of statement labels. See Section 2.3 - CODING.) Utilizing these control
structures in a top-down design eliminates arbitrary and capricious branching in a module

and results in a more precise flow of data.

The hand drawn Chapin charts (Figure 4) will be generated in the design process for
formal "“walk through" reviews of the structured design. The purpose of the review will be
to uncover flaws in the design. The Chapin chart will enable the reviewers to examine the

entire logic of the module.

In addition to the use of the restricted control structures, the Chapin charts will
also contain other attributes for ease of understanding. The chart will containl the title
and name of the module. The module name should be descriptive of the function performed
by the module and is the name that is used to reference the module (for example, in a CALL

statement).

2.2-14

CALL

DECIDE(VAR1,VAR2)

DESIGN

ENTRY

Set TAG to 1 for 1st CASE X

DO WHILE TAG < U4

DO CASE (1,1), (2,2),

(3,3), (u4,4), Depending on value of TAG

1 2 3 4
CALL TAG1 CALL TAG2 CALL TAG3 CALL TAGH
IF TAG< 3
ELSE THEN
If VAR2+TAG EVEN If VAR1+TAG EVEN
ELSE THEN ELSE THEN
CALL SMALL2 CALL GREAT2 CALL SMALL1 CALL GREAT1
Increment TAG by 1
EXIT
Purpose - To initialize TAG areas and build tables.
Date - Designed/9/30/75, JD - Coded/10/15/75, MP
Functions - Call individual TAG areas in sequence. On the

first two passes, build a small or large type cne
table first depending upon the value of the input

parameter VAR1.

upon the value of the input parameter VAR2.

Inputs ~ VAR1
VAR1
VAR2
VAR2

n "o on

(SRl SR

Outputs - None

Figure 4. Typical Chapin chart with external specifications.

if Great Table 1 is to be built first
if Small Table 1 is to be built first
if Great Table 2 is to be built first
if Small Table 2 is to be built first

2.2-15

On the next two passes, build
a small or large type two table first depending’

STANDARDS
The language for the Chapin chart should not be cryptic to the point that only the
designer understands the logic. Neither should it be so wordy that it can't fit in the

box.

The use of the IF THEN/ELSE control structure will sometimes result in a do-nothing
or NULL statement from the question. It is preferred that the NULL statement be designed

and implemented from the ELSE path of the question.

Module lengths should be limited to a manageable size. No firm rule can exist for
size; however, the tendency is to have between 10 and 100 lines of executable statements.
With this size, a single entry, single exit, and no arbitrary jumps to other parts of the
program, there is little need for page-turning or holding several places which must be

referenced constantly.

The function performed by the module should be described i a single sentence fol-
lowed by an expanded description, if necessary. The expanded description can be a narra-
tive description, tables, etc., and should be easily adaptable to card format for inclu-

sion in the programming documentationm.

There should be a precise description of all input and output data for the module.
It should include all parameters, any physical order, size, type, and range of valid
values. A full description of module interconnections is necessary as it will usually
affect any calling module. Any external effects should be explained, e.g., the reading of

a tape or printing.

The module name, functional description, input and output description, and external
effects will be called the module's external specifications. For design, these items will
be placed on the Chapin chart and/or additional pages if necessary. These items will be

prepared to be carried onto the program listing as the first half of a module's prologue.
2.2,4.3 Pseudo Code

After the design "walk through" and approval, the Chapin chart will be converted into
indented control structure pseudo code in punched card format. This will constitute the

second half of the module's prologue.

2.2-16

DESIGN

Pseudo code, English phrases derived from the Chapin chart, describes the flow of the
control structure. The simple sequence is a statement. The IF THEN/ELSE structure is
divided into three parts: (1) IF is usually a one line question; (2) THEN is a statement
to be executed if the answer is true; and (3) ELSE is a statement if the answer is false.
The THEN statement and/or ELSE statement can be followed by other questions and/or state-

ments. The DO UNTIL, DO WHILE, and CASE are statements.

The pseudo code acts as a bridge between the design and coding phases. It is a
transformation of the highly graphic, parallel vision, Chapin charts into a form similar
to the top-down, straight line, final source code. As such, there are several guidelines
for converting the Chapin charts to pseudo code.

1. All decisions which alter the simple sequence flow of the program will be shown.
1f, during coding, a FORTRAN flow altering statement is introduced, it must be
reflected in the pseudo code.

2., All FORTRAN CALL statements must be reflected as a simple sequence statement
in pseudo code.

3. Each FORTRAN statement which is a simple sequence type does not require a match-
ing statement in the pseudo code if it is part of a group of FORTRAN statements

which performs a common pseudo code statement.

Example:
PSEUDO CODE FORTRAN STATEMENT
Calculate X, Y, Z coordinates X =

Y =

7 =

4. The control statements IF, DO WHILE, DO UNTIL, and CASE always denote additional
statements will follow. Each of these control statements will use an appropriate
END statement to denote the end of a particular set. The END statement will be
indented the same number of columns as its subject. The END statements are
ENDIF, ENDDO, and ENDCASE.

5. The pseudo code will be written in a format with strict indentation in each

2.2-17

STANDARDS

group and subgroup of statements for ease of understanding and clarity. See

Section 2.3.1 - Source Code Documentation for specific rules.

2,2-18

STANDARDS

2.3 CODING

To ensure ease of understanding, maintaining, and interchanging of ANOPP code,
certain standards will be imposed. These standards encompass both documentary comments
and specific language statements. It is recommended that any exceptions to standards be
employed only within the bounds of a specific module and not be allowed to couple with

other modules.

2.3.1 Source Code Documentation

Comment statements in any programming language are both source code and documentation.
Thus, various kinds of descriptive information which would normally appear in publishable
programming documentation can be captured as corments in the source code also. For ANOPP,
design and documentary information will be brought together and placed in the program
source listing. This information will be contained in a special module prologue section
at the beginning of a routine and in regular comment statements interspersed among the
executable statements of a routine. The prologue section should explain the purpose and
functioning of a routine as well as the flow of control within the routine. If any coding
standard is violated, it must be noted in the prologue and, as an additional comment, in
the executable statements. The in-line comments are supplementary in nature and should

explain special cases or values and other non-obvious implementations.

The first line of a routine is the program header, be it PROGRAM, SUBROUTINE, FUNC-
TION, BLOCK DATA, or IDENT. The module prologue will appear immediately following the
program header and preceding any other lines of source code. The source code and optional

comments will follow the prologue.

The module prologue contains both descriptive information and a pseudo code transla-
tion of the module's Chapin chart. The definition of prologue contents and format is

given below. An example of a prologue is illustrated in Figure 1.

2.3-1

STANDARDS

ANOPP PROLOGUE FORMAT

COLUMN

0 0 1111

1) 0246

desfed

® PURFOSE - short description of subprogram function (1 - 2 sentences)
wte

AUTHOR - initials (level number such as L01/00/00)
N

g INPUT

* ARGUMENTS

¥ Name, - description

] .

* Namen - description

* OTHER

* /common block name/

: Namel, ...,Namen - described in subprogram name
s or

/common block name/

* Name, - description

) '

o .

*

Name_ - description
1 or n
5 Verbal description if required

! (For common variable, only those applicable to the module should be

* listed. The full description of each variable is required for major

¥ modules. However, for sub-modules, a reference to where the description

® can be found is sufficient.)

%

J OUTPUT

% ARGUMENTS - same as for INPUT

* OTHER - same as for INPUT

1S

* LOCAL VARIABLES .
= Name, - description

&

13 :

* Name_ - description

& n

FUNCTIONS

* 1. Function;

#

* .

* .

* n. Function

% n

* CONTROL STRUCTURES

* Description of control structures or reference to description in another
* subprogram or published manual. Control Structures include core tables,
* directories, control blocks, etc.

*

2.3-2

- CODING

* DATA BASE STRUCTURES

" Description of control structures or reference to description in another
subprogram or published manual. Data Base Structures are unit, member, and
* record structures.

P/
% SUBPROGRAMS CALLED
% Subprogram, , ..., Subprogramn
& ERRORS
i NON-FATAL
1. Condition, (error message class and number)

B

%

Eg . 1
.

d

ki n. Conditionn (error message class and number)
* FATAL
® same as for NON-FATAL

STANDARDS VIOLATIONS
i 1. Short description

.

n. Short description
% REMARKS

Additional comments
sk

(8 ENTRY
w . Pseudo Statement (in columns 10, 15, 20, etc.) - simple sequences and the

* following sets of key words should be aligned in order within a set: IF, THEN,
* ELSE, ENDIF; DO CASE, CASE, ENDCASE; DO WHILE, DO UNTIL, ENDDC. Subsequent
substructures should be indented 5 spaces.

% EXIT

e ofauts
Wew

The headings PURPOSE, AUTHOR, INPUT, OUTPUT, FUNCTIONS, ERRORS, AND SUBPROGRAMS .
CALLED will be mandatory. If a mandatory heading is not applicable, "None" should be
indicated after the heading and all subheadings omitted (e.g. INPUT - NONE). If a
mandatory heading is applicable, all subheadings under it must be specified. The
headings LOCAL VARIABLES, CONTROL STRUCTURES, DATA BASE STRUCTURES, STANDARDS VIOLATIONS,

and REMARKS are optional and, if not applicable, should be omitted.

The statements in the pseudo code should be labeled with statement numbers where
appropriate. These numbers should be in numerically ascending sequence from the top
down. Corresponding FORTRAN statements in the source code should be similarly numbered in

the same top-down sequence.

2.3-3

ofaate uts

b

LR R I IR I R A

fekek

STANDARDS

INTEGER FUNCTION NWDTYP(ITYPE)

ENTRY

10

20

30

40
50
60
EXIT

PURPOSE - DETERMINE THE NUMBER OF WORDS REQUIRED FOR A DATA
TYPL GIVEN ITS ANOPP INTEGER TYPE CODE.

AUTHOR - SSS(L01/00/00)

INPUTS
ARGUMENTS ,
ITYPE ANOPP INTEGER TYPE CODE
OTHER
/XCVT/
NDTCL, NMH, NCPW - DEFINED IN /XCVTBD/

CUTPUT
INTEGER FUNCTION VALUE OF NUMBER OF WORDS IN FIELD

FUNCTIONS
1. DETERMINE THE NUMBER OF WORDS IN A FIELD GIVEN ITS TYPE
CODE
2. VALIDATE TYPE CODE
INVALID CODES ARE ZERO AND OUT OF RANGE STRING VALUE

DATA STRUCTURES
SEE ANOPP PROGRAMMERS REFERENCE MANUAL FOR FULL
DESCRIPTION
1. ANOPP DATA TYPES TABLE

SUBPROGRAMS CALLED
XUFMSG

ERRORS
NON-FATAL - NONE
FATAL
1. INVALID ANOPP TYPE CODE
XUFMSG ERROR MESSAGE NUMBER 4

IF TYPE CODE IS BETWEEN 1 AND 10
THEN FIND NUMBER OF WORDS IN ANOPP DATA TYPES TABLE
ELSE IF FIELD ILLEGAL (TYPE CODE GREATER THAN 20)
THEN COMPUTE NUMBER OF WORDS FROM CODE
ELSE IF FIELD CHARACTER STRING (TYPE CODE BETWEEN -1 AND
-132)
THEN COMPUTE NUMBER OF WORDS FROM CODE
ELSE ILLEGAL TYPE CODE
ABORT WITH MESSAGE
ENDIF
ENDIF
ENDIF

Figure 1. Prologue and executable statement listing.

2.3-4

(@]

10

20

30

40
50
60

SO rE W

CODING

LOGICAL NERR

COMMON /XCVT/ NERR ,NEXPND
,NDT ,NDTCL(12,3) ,NBPW
,NCPW ,NBPC ,NMH
,NTNAME ,NTMAX ,NTCUR
,NTENT ,NTSTRT ,NT3USD
,NT3FRE ,NT30TR ,NT3STR
,IWR ,IRD ,LENGL
,NWPCI ,NMCPW

IF(((ITYPE.LT.1).OR.{ ITYPE.GT.10)) GO TO 10
NWDTYP = NDTCL(ITYPE,3)

GO TO 60

IF(ITYPE.LE.20) GO TO 20

NWDTYP = (ITYPE-21+NCPW)/NCPW

GO TO 50

IF(((ITYPE.GE.O).OR.(ITYPE.LT.-NMH)) GO TO 30
NWDTYP = (-ITYPE+NCPW-1)/NCPW

GO TO 40

CALL XUFMSG(4, 6HNWDTYP, SHITYPE, ITYPE)

THE CALL ABOVE SHOULD ABORT

THE STOP BELOW INHIBITS ILLOGICAL EXECUTION
STOP

CONTINUE

CONTINUE

CONTINUE

RETURN

END

Figure 1. Prologue and executable statement listing.

2.3-5

(Continued)

STANDARDS

Section 2.2.4.3 described the design conversion from Chapin chart to pseudo code.
Section 2.3.2 will describe the translation from pseudo code to FORTRAN source code.
Thus, the pseudo code in the prologue is a highly visible bridge between the module as
designed and the module as coded. Capturing this documentation in the source code will

simplify the tasks of understanding, testing, and maintaining a module's code.

2.3.2 TFORTRAN Language Standards

The requirements of ANOPP will impose certain restrictions on the use of the normal
FORTRAN language for two reasons. First, the requirement for machine independence demands
the use of a FORTRAN subset that operates compatibly on several manufacturer's computers.
Second, the set of requirements for structured programming and its attendant simple logic
structures demand several implementation algorithms since FORTRAN is not a structured

programming language.
2.3.2.1 Machine Independence

FORTRAN, a high level compiler language, is relatively machine-independent. Even so,
standard FORTRAN (ANSI X3.9-1966) has not been implemented by the same or different manu-
facturers to be completely independent of machine architecture. However, a fundamental
precept of ANOPP development is to minimize implementation and conversion problems on the
major third generation scientific computers (CDC CYBER series, IBM 360/370 series, UNIVAC
1100 series). To this end, ANOPP code will conform to ANSI standards as defined in the

FORTRAN Extended Version 4 Reference Manual subject to the restrictions listed below.

NON-ANSI constructions (indicated by shaded areas in the reference manual) must not
be emplaoyed. The following are standards that are to be followed to maximize machine
independence.

1. The magnitude of an integer constant or variable may not be greater than 231-1.

2. Subscripted variables should contain no more than 3 subscripts.

3. Array variables must be referenced with explicit subscripts, e.g., A(1) = 0,

not A = 0.

2.3-6

L.

10.

11.

12.

13.

14,

15.

16.

CODING

A CONTINUE statement requires a FORTRAN statement number.

The PAUSL statement is not to be used.

The NAMELIST statement is not to be used.

Implied DO's in DATA statements are not allowed. An array name without sub-
scripts is allowed although it is an ANSI violation.

The last statement of a DO loop may not be a logical IF statement.

BLOCK DATA subprograms may contain only type (e.g., REAL, INTEGER), DIMENSION,
COMMON, and DATA statements.

All variables containing Hollerith data should be limited to eight characters
left-justified and blank-filled. The forms nL and nR should not be used for
Hollerith data. The form nH should be used. When using Ai format specification,
i must not exceed 8. A3, A6, A8 are valid; AlO is invglid.

Packed fields within a computer word should not be used.

Octal (0 or B) or Hex (Z) in DATA or FORMAT statements may not be used.
Specification statements should precede any executable statement.

The order of specification statements should be as follows:

COMPLEX

DOUBLE PRECISION

REAL

INTEGER

LOGICAL

EXTERNAL

DIMENSION

COMMON

EQUIVALENCE

DATA

The variables in a COMMON block should be ordered as follows: complex, double
precision, real, integer, and logical.

Variables stored as single precision cannot be referenced as double precision
variables (via the FORTRAN EQUIVALENCE statement) because of the different

2.3-7

17.

18.

1g.

20.

21,

22.

23.

24,

25,

STANDARDS

internal word storage format for single and double precision words.
Caution must be exercised to insure that types (REAL, INTEGER, etc.) of FORTRAN
functions agree in the function subprogram and in the calling program. This
agreement between types is necessary for machines (e.g., IBM 360) in which
REAL and INTEGER values of FORTRAN functions are returned in different regis-
ters.
No attempt to extend the length of arrays through the EQUIVALENCE statement
should be made.
Caution must be exercised when using the EQUIVALENCE statement. Optimizing
compilers do not guarantee that the values used for the equivalenced variables
will be the expected value. Hence, EQUIVALENCE should be used only between
variables which have non-intersecting use spans in a program. Storage and
retrieval of a variable value is not necessarily in the‘order given by FORTRAN
source,
Multiple entry routines and routines with nonstandard returns are not to be
used.
There must be agreement with respect to the number of arguments and the type
of each argument in the argument list of a calling program and the calied
subroutine.
Only the carriage control characters "1" and "blank" may be used to control
printer spacing. No spacing or suppression of spacing characters may be used.
Modification of the length of an explicit type declaration (e.g., REAL*8) is
not allowed.
Deck (or member) names for subroutines should be six or less characters and
should agree with the primary entry point names. Deck names for Block Data
subprograms should end with fhe characters "BD".
FUNCTION subprograms whose type is not implicit must be typed in the FUNCTION
statement. TFor example, use ’ V

DOUBLE PRECISION FUNCTION ABC(X)

and not

2,3-8

26.

27.

28.

29.

30,

31.

32.

33.

34,

3s5.

36.

2.3.2.2

CODING

FUNCTION ABC(X)
DOUBLE PRECISION ABC

The name of a FUNCTION subprogram must appear somewhere within the subprogram.
All subscripted variables appearing in EQUIVALENCE statements must be subscripted,
e.g., use EQUIVALENCE (A(1), X(1)) instead of EQUIVALENCE (A,X).
DO loop indices may not be greater than 2*7 (131,071).
Logical operations are permitted on non-logical variables only using supplied
functions IAND, IOR, ICOMPL, IXOR.
Subscripts may not contain subscripted variables.
Actual subroutine parameters that are changed by the called subroutine must
have unique locations.
Example: CALL SUB{ A, A) where SUB is as follows:

SUBROUTINE SUB(C, D)

¢ =10

RETURN

END

is not allowed.

No DATA statements for variables in common blocks outside BLOCK DATA programs
will be used.
Blank common will not be used.
ENCODE, DECODE, or similar installation or machine dependent routines will
not be used.
Branching into the range of a DO statement is not allowed.

It is preferred that the use of constant numbers for referencing or indexing

tables be restricted.

Structured FORTRAN

FORTRAN is not a structured programming language. FORTRAN syntax does not directly

include the logic constructs defined in Section 2.2.3 and Section 2.2.4 of this document.

However, several implementation algorithms can be defined to permit adherence to the

concept of structured programming.

2.3-9

STANDARDS

2.3.2.2.1 Simple Sequence

FORTRAN syntax permits easy implementation of the simple sequence structure. There

is no need for statement numbers within the sequence except for format statements that do

not alter the flow of execution. Entry to the sequence may require a statement number if

it is entered as the result of a previous branching structure.

Example:

Pseudo Code FORTRAN Code
GET X READ 100, X
COMPUTE SQUARE ROOT OF X SX = SQRT(X)
PUT RESULT PRINT 100, SX

2.3.2.2.2 1IF THEN/ELSE

FORTRAN syntax does not include an IF THEN/ELSE structure. - However, various combin-

ations of Arithmetic If, Logical If, Go To, and Continue statements can provide the two-

branch logic desired. The rules for their use are as follows:

1.

The THEN path must precede the ELSE path in top-down order in both the pseudo
code and the FORTRAN code.

The ENDIF statement must be represented by a numbered Continue statement.

The Arithmetic If statement with two of the three branches equal is the preferred
implementation.

The Logical If must be used with logical variables or multiple relational expres-
sions.

The Logical If must be implemented with a .NOT. condition and a Go To the

ELSE path.

Example 1: Arithmetic If

Pseudo Code FORTRAN Code
IF ANGLE .LE. 180 IF(PI - THETA) 2, 1, 1
or
IF(THETA - PI) 1, 1, 2
1 THEN COMPUTE SIN(ANGLE) 1 SINTH = SIN(THETA)
GO TO 3
2 ELSE COMPUTE - SIN(180 - ANGLE) 2 SINTH = -SIN(PI - THETA)
3 ENDIF 3 CONTINUE

2.3-10

Example 2:

Pseudo Code

IF SWITCH
THEN CALL

Logical If

IS TRUE
SUBA

1 ELSE CALL SUBC
2 ENDIF

Example 3: ELSE path null
Pseudo Code

IF X .LT. ZERO

1 THEN X = ABS(X)

CODING

FORTRAN Code

IF(.NOT.(SWITCH)) GO TO 1
CALL SUBA

GO TO 2

CALL SUBC

2 CONTINUE

-

FORTRAN Code

IF(X) 1,2,2 {preferred)
or
Ir(.NOT.(X.LT.0)) GO TO 2

1 X = ABS(X)

ELSE NULL
2 ENDIF 2 CONTINUE
2.3.2.2,3 CASE
DO CASE (condition 1, statement 1)(condition n, statement n) on test variable

The DO CASE structure can be implemented with a variety of programming techniques

employing a combination of Go To, Computed Go To, Logical If, Arithmetic If, and Continue

statements. In all cases the ENDCASE statement must be represented by a CONTINUE state-

ment with a statement number. Four basic examples are illustrated.

Example 1: Integer Test Variable
Pseudo Code
DO CASE (1,1) (2,2) (3,3) (4,u)
(5,5) on 1
1 Process Control Statement 1
2 Process Control Statement 2
3 Process Control Statement 3

L4 Process Control Statement 4

S5 Process Control Statement 5
6 ENDCASE

FORTRAN Code

Go TO (1, 2, 3, 4, S) I

1 CALL PRCS1
GO TO &

2 CALL PRCS2
GO TO 6

3 CALL PRCS3
GO TO 6

4 CALL PRCS4
GO TO &

5 CALL PRCSS

6 CONTINUE

2.3-11

STANDARDS

Example 2: Arithmetic If

Pseudo Code FORTRAN Code
DO CASE (-,1) (0,2) (+,3) on X IF (X)1, 2,3
1 8X = SQRT(-X) 1 SX = SQRT(-X)
‘ GO TO &4
28X =20 28X =0
GO TO 4
3 8X = SQRT(x) 3 SX = SQRT(X)
4 ENDCASE 4 CONTINUE

Example 3: Logical If with an executable statement
Pseudo Code ‘ FORTRAN Code

DO CASE ("A",l) ("Bll’2) ("C",3)
("D",4) on NAME

1 CALL SUBA 1 IF(NAME.EQ.1HA) CALL SUBA
2 CALL SUBB 2 IF(NAME.EQ.1HB) CALL SUBB
3 CALL SUBC 3 IF(NAME.EQ.1HC) CALL SUBC
4 CALL SUBD 4 IF(NAME.EQ.1HD) CALL SUBD
5 ENDCASE 5 CONTINUE
Example 4: Logical If with Go To
Pseudo Code FORTRAN Code
DO CASE (™A",1) ('"B",2) ("C",3) IF(NAME.EQ.1HA) GO TO 1
("D",4) on NAME IF(NAME.EQ.1HB) GO TO 2
IF(NAME.EQ.1HC) GO TO 3
IF(NAME.EQ.1HD) GO TO &
GO TO S
1 CALL SUBA 1 CALL SUBA
GO TO 5
2 CALL SUBB 2 CALL SUBB
GO TO 5
3 CALL SUBC 3 CALL SUBC
GO TO 5
4 CALL SUBD 4 CALL SUBD
5 ENDCASE 5 CONTINUE

2.3.2.2.4% DO WHILE (condition) and DO UNTIL (condition)

The DO WHILE structure implies that condition testing is done before the sequence of
operations is performed. The DO UNTIL structure implies that the sequence of operations
is performed at least once before condition testing is done. These structures can be
implemented in FORTRAN with various combinations of Arithmetic If, Logical If; Go To,
Continue, and Do statements. The possible variations are too myriad to enumerate speci-
fically. However, the following standards will promote adherence to the spirit of top-down

structured programming.

2.3-12

CODING

1, A Do statement can be used for a DO UNTIL with an incrementing condition.
. 2. If a Do statement is used for a DO WHILE, then the condition must be tested
as the first statement inside the Do or as the statement immediately preceding
the Do if it is an incrementing condition with variables instead of constants.

3. All FORTRAN Do loops must end with a numbered CONTINUE statement.

2.3.2.2.5 CONTINUE

A CONTINUE statement is used if required to insure that the DO WHILE or DO UNTIL will
stand alone (i.e., not depend on the previous or next pseudo code structure). A labeled
CONTINUE statement can therefore appear in the FORTRAN code with a label number not
appearing in the Pseudo code. The label numbers should, of course, appear sequentially in
the FORTRAN code. Examples 1, 3, and 4 show a labeled CONTINUE not shown in the Pseudo

code but required for implementation. Example 2 shows the absence of any CONTINUE state-

ment.
Example 1
Pseudo Code FORTRAN Code
DO UNTIL { TABLE(I) = NAME FOR DO 9 I =1, LTAB
I = 1 to TABLELENGTH)
9 CONTINUE
10 ENDDO 10 CONTINUE
Example 2
Pseudo Code FORTRAN Code
10 DO UNTIL A EQUALS B 10 veeene
ENDDO IF(N.NE.B) GO TO 10
- Example 3
Pseudo Code FORTRAN Code
DO WHILE (I.LE.KXFOR I = J IF(J.GT.K) GO TO 10
- TO K) DO 9 I=J,K

9 CONTINUE
10 ENDDO 10 CONTINUE

2.3-13

STANDARDS

Example 4
Pseudo Code FORTRAN Code
9 DO WHILE (A.EQ.B .OR. C 9 IF(.NOT.{ A.EQ.B .OR. C.GT.D))
.GT.D) *G0 TO 10
GO TO 9
10 ENDDO 10 CONTINUE

2.3.3 Assembly Language Standards

There 1s no unique assembly language that is compatible across several manufacturers'
computers. The assembly language standards for ANOPP, then, fall into two categories: (1)
general requests to adhere to the spirit of structured programming and (2) specific
interface requirements between FORTRAN and assembly language subroutines for a given

machine.
2.3.3.1 General Rules

The following general rules will promote clarity and understanding while adhering to
the spirit of structured programming.

1. Each routine shall have a module prologue as described in Section 2.3.1.

2. Multiple entry points and non-standard returns are not allowed.

3. Self-modifying code is not permitted. Instructions can change data only,
they cannot change other instructions.

4. Assembly code must follow the same top-down order as the pseudo code.

5. Liberal use of comments is recomﬁended for clarity and understanding.

6. The prologue's pseudo code should be repeated in appropriate comment fields
of assembly statements.

7. Local macro definitions should be found after the prologue at the beginning
of a routine.

8. System macros should briefly be explained and a document reference cited.

2.3-14

CODING

2.3.3.2 COMPASS/FORTRAN Interface

Several conventions must be observed when FORTRAN and COMPASS subroutines are inter-

mixed. For FORTRAN Extended, the conventions are explained in the Fortran Extended

Version 4 Reference Manual. A brief list follows:

1. Every COMPASS subroutine shall have:
a. IDENT and END cards beginning in column 113
b. A trace word of the form VED 42/name, 18/entry address;
¢. An entry point of the form name DATA O;
d. An entry point name agreeing with the deck name on the IDENT statement;
e. Register A0 saved on entry and restored upon exit.

2. Function subroutines shall return single precision values in register X&;
double precision and complex values are returned in registers X6 and X7.

3. Subroutine and function calls are performed by a return jump sequence with
tpace information and argument addresses passed through an argument list.

The form is as follows:

SAl ARGLIST
+ RJ =X external subprogram name
- VID 12/line number, 18/trace word address -
ARGLIST VID 60/ARG1 address
VED 60/ARG2 address
VFD 60/ARGM address
VED 60/0 end of argument address list

Sample parts of a COMPASS subroutine are shown in Figure 2.

e ;? P A\ ui] - 2.3-15

STANDARDS

IDENT SAMPLE

foded
*Pp
® R
Ee}
E L
* 0]
G
U
% E
E
Nl
ENTRY SAMPLE
TRACE VED 42/0LSAMPLE, 18/SAMPLE Trace word
TEMPAO DATA O Holding location for A0
EXIT SAl TEMPAO Restore AO
SAO X1
SAMPLE DATA O Entry point
SX6 AO Save AC
SA6 TEMPAO
SAD Al Save input argument list
e address
SA1 ALIST Call SUB(A,B,C)
RJ =XSUB
VED 12/%-TRACE, 18/TRACE
SA1 AO+1 " Fetch 2nd argument
SA1 X1
EQ EXIT Restore A0 and return through entry point
ALIST VFD 60/A Address of A
VFD 60/B Address of B
VED 60/c Address of C
VED 60/0 End of argument list
A DATA © Storage for A
B DATA 0 Storage for B
c DATA O Storage for C
END

Figure 2. Sample parts of COMPASS routine.

2.3-16

STANDARDS

2.4 TESTS

Testing is the activity that takes coded pseudo and FORTRAN statements and removes
compiler statement errors, input formatting errors, output formatting errors, and program
structural and logic errors. The testing activity is composed of (1) desk checking, (2)

component testing, (3) integration testing, and (4) system testing.

2.4.1 Desk Checking

Upon completion of coding of the FORTRAN or assembly statements for a module, the
product should be reviewed with the Chapin chart and the pseudo code for completeness and
accuracy. The module is compiled and all compiler generated errors are removed to obtain

an error-free compilation.

2.4.2 Component Testing

Component or isolation testing is that activity which takes a module, exercises it
through its full range of inputs and outputs, and evaluates its performance for any
necessary correction. Fach and every path of a module must be exercised during component
testing. Stubs for other modules that are referenced must be generated to allow a smooth

run to completion.

Standards for component testing will produce tests that will:

1. exercise typical error free cases,

2., exercise error free worst case,

3. produce each error code,

4, produce variations of errors,

5. vary all system parameters affecting the module for the above runs, and

6. vary user options affecting the module for the above runs.

2.4.3 Integration Testing

After component testing, the module is integrated into the program. In the figure
below, all modules designated with I are integrated and the modules designated with N are

2.4-1

STANDARDS

not integrated. A module is never integrated into the program unless it is subordinate to

a previously integrated module.

When a module is integrated into the program, integration tests will be performed.
Integration and testing is the activity wihch places the tested module into the program
and exercises the module. The module is exercised as thoroughly as possible for inter-
action with other modules. The tests should check for:

1. typical case with no errors,

2. worst case with no errors (checking for efficiency and any designed limits),

3. each error code,

4. all possible errors in one entry,

5. various typical cases,

6. various system parameters that affect the module, and

7. wvarious user options that affect the module.

The test cases and results of integration tests will be documented and saved for
later use. These test cases can be used to determine if the program is operating as

designed.

2.4-2

TESTS

2.4.4 sttem Tests

System testing is the activity of exercising the program utilizing all inputs in
various combinations. According to the concepts of structured programming and top-down
module integration, as the last module is integrated and tested, testing of the entire
program will be complete. However, tests will be conducted for:

1. the ANOPP control statement stream with no errors and composed of

a. simple sequences,
b. various typical combinations, and
c. worst case combinations;
2. the ANOPP control statement stream with errors, such as,
a. meaningless input,
b. no input,
¢, stacked sets of input, and
d. errors;
3. all system parameters for
a. typical settings,
b. special cases,
c. worst cases, and

d. illegal values.

2,4-3

STANDARDS

2.5 PUBLISHABLE DOCUMENTATION

2.5.1 Types of Publishable Documentation

A program of ANOPP's magnitude requires clear and complete documentation to be of
value to users and programmers. Engineers and users must understand the available pre-
diction capabilities and know how to formulate a problem and ‘obtain a solution. Program-
mers must know how to install, modify, and add to the system. Such documentation will be
provided in four separate, indexed, stand-alone documents:

1. Programmer's Manual,

Z. Theoretical Manual,

3. User's Manual, and

4. Demonstration Problem Manual.
2.5.1.1 Programmer's Manual

The Programmer's Manual will contain all coding information and specifications for
the Aircraft Noise Prediction Program. It will be written for use by programmers to
install, execute, modify, and add modules to the program. As such, it will contain:

1. a detailed introduction that will describe the concepts and functions of ANOPP;

2. the standards for design, coding, testing, and program documentation to insure

compatibility and ease of maintenance;

3. description of data and tables;

L. executive, data management, utility, and functional module descriptions;

5. instructions for installation and operation;

6. instructions for modification and addition of modules to the system;

7. support program descriptions; and

8. easily updated index.
2.5.1.2 Theoretical Manual

The Theoretical (or methods) Manual will provide a concise mathematical description

of the methods employed in the computational or functional modules, It will describe the

2.5-1

STANDARDS

analytical or empirical methods and will outline the methods of solution, including all
implicit and explicit assumptions, limits of use and limits of accuracy. References to
published material should be included in the text and the index. A user can refer to this
manual to determine the engineering and mathematical methods that are available in the

program.
2.5.1.3 User's Manual

The User's Manual will be structured to accommodate the needs of different levels of
users. A user will employ this manual to formulate problems and anticipate results. The
manual will provide instructions and descriptions for the preparation of problem data and
explain how to invoke the various options provided for problem solution. The User's
Manual will thoroughly explain the Executive Control Language and general related capa-

bilities.
2.5.1.4 Demonstration Problem Manual

The Demonstration Problem Manual will contain detailed descriptions of sample problem
input and solutions. This manual will be utilized for user education and system valida-

tion. It will be beneficial to the engineer user and his programming staff.

2.5.2 Publishable Manual Preparation

2.5.2.1 General

ANOPP documentation will be typed on 10" x 13" mats that will be supplied by ANOPO.
These mats will be reduced to 90 percent of their original size during the printing

process.

Documents will be prepared using magnetic cards compatible with the equipment avail-
able to ANOPO. The equipment available to ANOPO is an IBM MAG Card II Typewriter, System

Model No. 6616; specifications: dual pitch word processing system.

The magnetic cards of the ANOPP manuals will be furnished te ANOPO with an index to

facilitate cataloging and filing the cards.
2.5-2

PUBLISHABLE DOCUMENTATION

Computer printout used in the manuals must be clear and sharp. To ensure this, the
unlined side of the computer paper should be used and a new ribbon should be inserted on

the printer.

To change camera-ready manuscripts, correction tape is preferred over mortising
(i.e., cutting and pasting). Also, for one-letter corrections, a chalk-like substance may

be used. ERASURES AND OPAQUE WHITE CORRECTION FLUID ARE NOT ACCEPTABLE.

Minor modifications to pages of published ANOPP documentation will be communicated to

ANOPO by means of the Documentation Change Report (DCR).

The general format of the manuals will be:
1. TFront Cover

2. Inside Cover Page

3. Preface

4, Table of Contents

5. Page Status Log

6. Text Body

7. References

€. Index

9., Back Cover)
2.5.2.2 Spacing
Double-spacing will be used except where groups of a few single-spaced lines sepa-

rated by double-spacing for the groups is more desirable for clarity or appearance.

Paragraphs will be indented S spaces and will be separated from each other by 2%
1ines. A line associated with an unnumbered, underlined explanatory heading will be
indented 5 spaces.

Section and subsection titles will be separated from the text (above and below the

title and from each other) by 3 lines.

rf_ﬂi3i‘:n‘ . 2.5-3

STANDARDS

2.5.2.3 Section Numbering

Major sections, i.e., those with one number, will be typed with all uppercase letters
and will be identified with a decimal classification, i.e., one number followed by a
period, as follows:

12. DOCUMENTATION

Major subsections, i.e., those with two numbers, will be typed with all uppercase
letters and will be identified with a decimal classification and two numbers, as follows:

12.2 MANUAL PREPARATION

Minor subsections, i.e., those with three numbers, will be typed with initial capi-
tals, underlined, and identified with a decimal classification and three numbers, as
follows:

12.2.5 Contents of Manual

Further subdivision of minor subsections will be typed with initial capitals, will
not be underlined, and will be identified with a decimal classification and four or more
numbers, as follows:

12.2.5.3 Text Printing

2.5.2.4 Page Numbering and Running Headings

Major subsections will begin at the top of an odd-numbered page. (0dd-numbered pages
will be printed on the right and even-numbered pages will be printed on the left.) Other
units such as Data and Table Descriptions should begin at the top of a page where clarity
or convenience of use is thereby improved. 1In the case of large major subsections, minor

subsections may begin at the top of the next page.

Page numbers will be centered at the bottom of each page. The number will indicate
the major subsection identifier and page number within the subsection, separated by a
hyphen. Examples are:

6.1-1

2.5-4

PUBLISHABLE DOCUMENTATION

The numbers of pages changed at a later date will use the format of major subsection
identifier, hyphen, page number followed by the date of the change (mm/dd/yy), as follows:
6.1-1 original page

6.1-2 (12/09/7%5) changed page

Pages inserted at a later date will be identified by the major subsection identifier,
hyphen, page number, decimal and number followed by the date of the insertion in the form

(mm/dd/yy), as follows:

6.1-1 original page
6.1-2 (12/09/75) changed page
6.1-2.1 (12/09/75) ~ added page
6.1-2.2 (12/08/75) added page

6.1-3 original page

If an odd number of pages is to be inserted, one blank page with a running header and
a page number should be added to ensure consistency. Such a blank page will contain the

following sentence: THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY.

Pages inserted at a later date between pages of insertions made subsequent to the
original issue will be identified by the major subsection identification number, hyphen,

page number, decimal, added page, decimal, inserted page and date as follows:

6.1-1 original page
6.1-2 (12/08/75) changed page
6.1-2,1 (12/09/75) added page
6.1-2,1.1 (01/10/76) inserted page
6.1-2.1.2 (01/10/76) inserted page
6.1-2.2 (12/09/75) added page
6.1-3 original page

Running headers, in capitals, will be centered at the top of each page. The major
section name will be used as the running header on EVEN-NUMBERED PAGES, and the major

2.5-5

STANDARDS

subsection name will be used as the running header on ODD-NUMBERED PAGES. There is one
major exception to this rule: for the first page in every major subsection, the major
section name will be used as the running header. Care must be exercised in determining
running headers for pages to be inserted. For example, the page to be inserted between
6.1-3 and 6.1-4 is 6.1-3.1 and is considered to be an even-numbered page for the purpose
of determining the running header. The reason for this is that 6.1-3.1, being printed on
the back of 6.1-3 (an odd-numbered page), is in effect an even-numbered page. A blank
"odd-numbered" page, 6.1-3.2, with subsection running header and page number must be typed
to insure consistency. This blank page will contain the following sentence: THIS PAGE

HAS BEEN LEFT BLANK INTENTIONALLY.
2.5.2,5 Equations

Equations will be numbered consecutively beginning with 1 for the first equation in
each major subsection. References to equations outside a major subsection must refer to
both the equation number and the major subsection number, i.e., See Section 5.6, Equation
12, If the reference is to another manual, the manual name (Theoretical Manual, User's
Manual, Programmer's Manual) will be given, i.e., See ANOPP Theoretical Manual, Section

5.6, Equation 12.

Equations will be centered on the line and separated from the text by three blank
lines. Equations will be punctuated as part of the text and will be identified at the

right-hand margin with its Arabic numeral equation number in parenthesis.

When a group of equations appears in succession without text between them, the
longest equation will be centered and the equal signs of the remaining equations will be

aligned with the equal sign of the longest equation.

The transpose operator for a matrix should be placed outside the brackets (i.e.,
[A]T is correct; [AT] is incorrect). The same rule applies to the inverse operation
(i.e., [A]_1 is correct; [A-i] is incorrect). All subscripts for matrices will be

lowercase letters (i.e., Kg9 , Kfs).

2.5-6

PUBLISHABLE DOCUMENTATION

All plus and minus signs in equations will be preceded and followed by one space.
There will be two spaces before and after all equal signs in equations. There will be no
spaces between parenthetical expressions. For example:

(AXYB)Y+ (D) = ¢

Equations inserted at a later date will be numbered as decimal parts of the preceding
equation. For example, two equations inserted between Equation 5 and Equation 6 will be
designated by Equation 5.1 and Equation 5.2, respectively. For more complicated cases,

follow the rules given in Section 2.5.2.4 of this document.
2.5.2.6 Tables, Figures, and References

Tables and figures will be numbered consecutively beginning with the first table or
figure in each major subsection. References to tables and figures outside a major subsec-
tion must refer to both the table or figure number and the major subsection number, i.e.,
See Section 5.6, Table 2. If the reference is to another manual, the manual name (ANOPP
Theoretical Manual, ANOPP User's Manual, ANOPP Programmer's Manual) will be given, i.e.,

See ANOPP User's Manual, Section 5.2, Table 2.

Table titles will be typed with initial capitals. Periods will follow the Arabic
table number and the end of the complete title as follows:

Table 3. This Is an Example of a Table Title.

Figure captions will be typed in lower case letters except for the first letter of
the first word. Periods will follow the Arabic figure number and the end of the complete
caption as follows:

Figure 4. This is an example of a figure caption.
Single line captions will be centered under the figure, and multiple-line captions will

be left-justified with the last line centered.

References will be listed at the end of each major section and will be numbered

consecutively beginning with 1 for the first reference in each major sectiom.

Tables, figures, and references inserted at a later date will be designated by a

(?umber followed by a decimal and a number. For example, two figures inserted between
ADCUA]
Op p 0 4r 2y
B Qg 7 1
Jilanﬁgr

2.5-7

STANDARDS

Figure 2 and Figure 3 will be designated Figure 2.1 and Figure 2.2, respectively.

The words Equation, Figure, Reference, Section, and Table will be spelled out with
initial capitals when used either in the text or in a caption. The associated Arabic

numeral will not be enclosed in parentheses.

2.5.2.7 Capitalization

Data block names, module names, Data card names, entry point names, and FORTRAN
variable names will all be capitalized and the letter O will be slashed (@).

Care should be exercised in the use of initial capitals. Formal type names should be
capitalized throughout the manuals.
2.5.2.8 Punctuation

Commas will be used to separate the elements in a series and a comma will be placed
before the final conjunction.

For punctuation of potential executable statements, punctuation characters should be

representative of the actual coded statement.

2.5.3 Changes to Baseline Manuals

The four ANOPP manuals (Theoretical Manual, User's Manual, Programmer's Manual, ané
Demonstration Problem Manual), delivered to ANOPO via paper, called mats, and IBM MAG Card
II compatible magnetic cards, constitute baseline documents. When information in a
baseline document is added, deleted, or changed, a formal written update to the baseline

document is required.

To initiate a change to a baseline document, a Documentation Change Report (DCR) is
required and must be submitted to the maintenance organization. A DCR is shown in Figure

1.

The report will be reviewed by the maintenance organization and/or ANOPO for appro-
priateness and extent of change. Changes to manuals can affect software. The results of
the reviews will consist of comments, required changes, and suggested changes as well as

' 2.5-8

PUBLISHABLE DOCUMENTATION

DCR No.

: DCR No.

ANOPP DOCUMENTATION CHANGE REPORT (DCR)

Originator: Date:

Organization: Phone No.:

Manual Theoretical
User's ‘ : Page
Programmer's Numbers
Demonstration

Description and reason of change:

(Attach a copy of the page(s) to be changed with corrections typed. Use separate pages if

necessary.)

Comments:
Editor ANOPP DPSL Change ANOPO Editor DPSL
Approval Approval Entry Made Verif. Verif. Entry
Date Date Date Date Date Date Date

Figure 1. ANOPP DOCUMENTATION CHANGE REPORT (pc)

2.5-9

. STANDARDS

rejection or acceptance of the change. If the change is unacceptable, the submitter will
be so informed and told what action must be taken prior to resubmission. If the change is
acceptable, the maintenance organization will be informed so the change can be incorpor-
ated into existing mats and magnetic cards. If the change affects software, a Software
Change Report (SCR) must be submitted with the DCR. If the change affects more than one

manual, those manuals and page numbers must be indicated in the COMMENTS of the DCR.

All changes will be rigidly controlled, reviewed, cataloged, accounted, and filed.
Documentation Page Status Logs (DPSL) will be maintained for and in each manual. A
Documentation Change Report Status Log will be maintained with the changes for each
manual. If a change affects more than one manual, it will be checked on the primary

Documentation Change Request Report Status Log by the DCR number.

2.5-10

EXECUTIVE MODULES

3.1 OVERVIEW

Chapter 3 provides a thorough description of the ANOPP system including labeled
common blocks, executive control structures, executive data base structures, the Executive
Management System (EM), Data Base Management System (DBM), Dynamic Storage Management

System (DSM), the Update Utility, and other general utilities.

The Executive Management System controls the execution of ANOPP from beginning to
end. The Executive Monitor (XM), described in Section 3.5.3, calls into execution the
eight phases of execution described in Section 3.5.4. The course of execution is de-
pendent on the control statements found in the Primary Input Stream. A complete descrip-

tion of these control statements is found in Section 3.5.2.

The Data Base Management System described in Section 3.6 provides ANOPP with a means
of storing and retrieving data on sequential and direct access storage devices. DBM
provides user callable routines for accessing and manipulating the data base structures

described in Section 3.u4.

The Dynamic Storage Management System described in Section 3.7 provides ANOPP with a
means of getting and freeing various sized blocks of available core storage and making
them directly addressable by the requesting module. Many of the core-resident control
structures described in Section 3.3 are allocated and manipulated via functions of the

ISM.

The General Utilities described in Section 3.9 are a collection of general purpose
subprograms available for usage by all executive system routines. Most of the general

utility modules are also available for use by functional modules.

The UPDATE control statement is described under the Executive Management System but
is explained in more detail in Section 3.8. UPDATE provides a means of building a new
data unit either from an existing data unit used as a basis for modification or from one

or more data members on one or more data units.

3.1-1

EXECUTIVE MODULES

3.2 LABELLED COMMON BLOCKS

The FORTRAN data structure called labelled common is used in ANOPP implementation for
reasons of efficiency and security. It is efficient in terms of storage and execution
time for several modules that require access to a common set of parameters to share them
in common storage rather than continually passing them as arguments in lengthy calling
sequences., Security is maintained on a need to know basis by including the labelled
common statement in only those modules that share the requirements for availability of the

parameters.

All of the labelled common blocks used by the ANOPP executive system are described in
the following sections in terms of their primary purpose followed by a list of modules

that reference them.
2.2.1 /XBSC/

Common block /XBSC/ contains those variables used during the Initialization Phase by
XBS to initialize various executive system tables. For further description of the vari-

alles in /XBPSC/, see the prologue of Block Data XBSCBD.
Those Executive Modules which use /XBSC/ are:

XBS XBSCBD XFMANT
3.2.2 /XCAC/
Common block /XCAC/ contains variables used during the Secondary Edit Phase by XCA,
Por further description of the variables in /XCAC/, see the prologue of Block Data XCACED.

Those Executive Modules which use /XCAC/ are:

XCA XCABD XCABST XCACL@ XCAl XCAMST
XCAMXX XCANCS XCANS XCANWC

3.2.3 /XCRc/

Common block /XCRC/ contains those variables used by XCR, the executive crack module.
For further description of the variables in /XCRC/, see the prologue of Block Data XCRCBD.

3.2-1

Those Executive Modules which use /XCRC/ are:

XCR
XCREXP
XCRP@T

3.2.4 /%cs/

XCRCBD
XCREFC
XCRREN

XCRCH
XCRILL
XCRSEN

XCAD@T
XCRPD
XCRSNM

EXECUTIVE MODULES

XCRDR
XCRPH
XCRWC

XCREF
XCRPN
XCRWCH

Common block /XCS/ contains those variables used in processing or building control

statement records.

Block Data XCSBD.

Those Executive Modules which use /XCS/ are:

For further description of the variables in /XCS/, see the prologue of

XAR XAT XBS XBSDBM XBSDSM XBSBCS
XCSBD XCSIL XCSL@G XCSP XCSPM XCSSL
XCT XDT XEX XEXA XEXL XFM -
XFMANT XGP XIF XLINK XMERR XMERRI
XMERRL XPA XPAVTB XPU XPUTP XRT
XRTAMU XRTBAD XRRBCS XRTBLR XRTCAL XRTCSS
XRTDAT XRTI XRTLRF XRTLSE XRTSER XRTSEX
XRTSIF XRTSSS XRTSYN XRTU XRTVCS XSS
XTB XUN XUPADS XUPCS XUPDIR XUPSRC
XUPSYN

3.2.5 /XCSFM/

Common block /XCSFM/ contains those parameters used by the Executive System Modules,
_ including those which maintain interface functions between the control statement Stream
and the functional module. For further description of the variables in /XCSFM/, see the

prologue of Block Data XCSFMBD.

Those Executive Modules which use /XCSFM/ are:

XASKP XBS XBSSP XBSTP XCSFMBD XCSP
XCSST XEX XEXA XFAN XFMANT XGETP
XIF XPA XPAGE XPAVTB XPLAB XPLABQ
XPLINE XPUTP

3.2-2

LABELLED COMMON BLOCKS

3.2.6 /XCSPC/

Common block /XCSPC/ contains those variables during the Control Statement Processing
Phase by XCSP. For futher descriptions of the variables in /XCSPC/, see the prologue of

Block Data XCSPCBD.

Those Executive Modules which use /XCSPC/ are:

XAR XAT XCSIL XCSL@G XCSP XCSPBD
XCSPM XCSSL XCT XDR XDT XEX
XEXA XEXL XGg XIFr XMERR XMERRI
XMERRL XPA XPU XSS XTB XUN
XUPCS XUPLST XUPNEW XUPSRC

3.2.7 /XCVT/

Common block /XCVT/ contains general variables used by various Executive System
Modules. For further description of the variables in /XCVT/, see the prologue of Block

Data XCVTBD.

Those Executive Modules which use /XCVT/ are:

DSMERR ILSHFT IMASK IKSHFT ISHIFT MMBAME
MMBFSI MMBFST MMBFT8 MMCL@S MMCLSE MMGED
MMPEMT MMSAND MMSUD MMUHMD MMUPMD MMVTD
NUMTYP NWDTYP TMCL@S TMEDTB TMFTE TMM@PN
TMSTD TMT@PN XAR XASKP XAT XBS
XBSDBM XBSDSM XBSGCS XBSIN XBSSP XBSTP
XCA XCABST XCAT XCAMST XCAMXX XCANCS
XCANS XCANSP XCANWC XCATRA XCR XCRCF
XCRCH XCRD@T XCRDR XCRFC XCRILL XCRPD
XCRPH XCRPN XCRPYT XCRPS XCRSRD XCRWC
XCRWCH XCcsces XCSCIL XCsp XCSPM XCSST
XCT XCDBDU XCDBMD XCTDU XCUTBD XDR
XDT XEX XEXA XFAN XFETCH XEM
XFMANT XFMDSM XFMMM XFMTM XGETP XIF

XM XMERR XMERRI XMPRT XPA XPAGE
XPAVTB XPK XPKM XPU XPUTP XRE
XRT XRTBAD XRTBCS XRTBLR XRTCAL XRTEND
XRTI XRTLRF XRT@BD XRTPIN XRTSIF XRTSYN
XRTU XRTVCS XST@RE XTB XTBERR XTRACE
XT1AL XT1EV XT2AL XT3FL XT3FV XT3IF
XT3LK XUN XUNALL XUNBGN XUNCCS XUNLUH
XUNPK XUNPKM XUP XUPADD XUPADS XUPALL

XUPCDT XUPCGP XUPCHG XUPCHI XUPCHS XUPCHX
XUPCIN XUPC@S XUPCRY XUPCQD XupPCQT XUPCS
XUPDIR XUPECE XUPECI XUPINS XUPNEW XUPNMT
XUPPMS XUP@MT XUPPRE XUPSRC XUPSUM XUPSYN
XUPXCR XUPXFR XVNAME

3.2-3

EXECUTIVE MODULES
3.2.8 /XDBMC/

Common block /XDBMC/ contains those variables used by the Data Base Management
System (DBM). For further description of the variables in /XDBMC/, see the prologue of

Block Data XDBMCBD.

The Executive Modules which use /XDBMC/ are:

MMBAME MMBFSI MMBFST MMBFT1 MMBFT8B MMBFTS
MMBMCI MMBMH MMCL@S MMCLSE MMCRMX MMD@MC
MMEDNM MMERR MMFEFB MMGED MMGEFB MMGET
MMGETE MMGETR MMGETW MMGNEW MMGNWE MMI@MC
MMMDMH MMNWR MM@BPRD MM@PWD MM@PWS MMPIMT
MMP@SN MMPUT MMPUTE MMPUTR MMPUTW MMREW
MMRMD MMRMH MMRRS MMSAMD MMSFEI MMSKIP
MMSUD MMUHMD MMUPMD MMVBA MMVNM MMVUM
XAR XAT XBSDBM XCT XCTBDU XCTBMD
XCTDU XDBMCBD XDR XDT XEMMM XFMTQ
XPU XUN XUNALL - XUNBGN XUNCCS XUNCPY
XUPADD XUPALL XUPCGP XUPCHG XUPNEW XUPXCR
XUPXFR

3.2.9 /XDsMc/

Common block /XDSMC/ contains variables required by the Dynamic Storage Management

System (DSM). For further description of the variables in /XDSMC/, see the prologue of

Block Data XDSMCBD.

Those Executive Moduleé which use /XDSMC/ are:

DSMB DSMC@N DSMDFB DSMERR DSMET DSMEUX
DSMF DSMFLB DSMG DSMGUB DSMI DSMIDS
DSML DSMQ DSMR DSMS DSMU DSMX
DSMXFB DSMIST XDSMCBD XFMDSM

3.2.10 /XDTMC/

Common block /XDTMC/ contains variables required by the Table Manager Module.

For

further description of the variables in /XDTMC/, see the prologue of Block Data XDTMCBD.

Those Executive Modules which use /XDTMC/ are:

TMBLD1 TMCL@S TMEDTB TMERR TMFTE TMGEN1
TMM@PN TM@PN TM@PNA TMSTD TMTABP TMTERP
TMT@PN XBSDBM XDTMCBD XFMTM XTB XTBADV
XTBAIV XTBLD1 XTBPNC XTBVAR

3.2-4

LABELLED COMMON BLOCKS

3.2.11 /XPgTH/

Common block /XP@TE/ contains those variables used by the module XCRP@T and its
submodules. For further description of the variables in /XP@TH/, see the prologue of

Block Data XP@THBD.
Those Executive Modules which use /XP@TH/ are:

XCRD@T XCRDR XCREXF XCRFC XCRPH XCRP@T
XCRSRD XCRWCH XP@THBD

3.2.12 /XRgET/

Common block /XR#BT/ contains those variables used during the Primary Edit Phase by
¥RT. TFor further description of the variables in /XR@@T/, see the prologue of Block Data

XRPBTBD.

Those Executive Modules which use /XR@@T/ are:

XRP@TBD XRT XRTBAD XRTBCS XRTBLR XRTCAL
XRTCSS XRTDAT XRTEND XRTI XRTLRF XRTLSA
XRTLSE XRTPIN XRTRS XRTSER XRTSEX XRTSIF
XRTSSS XRTSYN XRTTC XRTU

3.2.13 /XSLK/

Common block /XSLF/ contains those variables used in creating and using sequential
library files. For further description of the variables in /XSLF/, see the prologue of

Block Data XSL¥BD.
Those Executive Modules which use /XSLF/ are:

XSLTYBD XUN XUNALL XUNBGN XUNCCS XUNCPY
XUNEND XUNLUH

3.2.14 /XSPT/

Common block /XSPT/ contains those Executive System Parameters which may be set by
the user via a SETSYS control statement. For further description of the variables in

/XSPT/, see the prologue of Block Data XSPTBD.

3.2-5

EXECUTIVE MODULES

Those Executive Modules which use /XSPT/ are:

XBS XBSSP XCA XCAMXX XCANCS XCANWC
XCSP XMERR XRT XRTDAT XRTEND XRTPIN
XSPTBD Xss

3.2.15 /xupc/

Common block /XUPC/ contains those variables used by the UPDATE modules (XUP). For

further description of the variables in /XUPC/, see the prologue of Block Data XUPCBD.

Those Executive Modules which use /XUPC/ are:

Xup XUPADD XUPADS XUPALL XUPCDT XUPCGP
XUPCHG XUPCHI XUPCHS XUPCHX XUPCIN XUPC@S
XUPCPY XUPCQD XUPCQT XUPCS XUPDIR XUPINS

XUPLST XUPMLV XUPNEW XUPNMT XUP@MS XUP@MT
XUP@ST XUPPRE XUPRLV XUPSRC XUPSUM XUPSYN
XUPXCR XUPXFR

EXECUTIVE MODULES

3.3 EXECUTIVE CONTROL STRUCTURES

This section includes a graphical layout and a usage description of all primary
control structures used and referenced by executive medules. A control structure is a
table, a directory or any other information block which is core resident and not residing
on a data unit/member. An information block which is both core resident and data unit/mem-

ber resident is classified as a data base structure and is included in Section 3.4,

These control structures residing in core are generally addressable in two ways;
either as indexed arrays from 1 to n, or as a block of dynamic storage indexed relative to
the FORTRAN variable IX in system labelled common block /XAN@PP/ plus a positional offset
from the start of the block. The dynamic storage index is referred to generically in this
manual as the IDX of the block. See the following example which addresses the array TBL

from 1 to n or correspondingly the block IX(IDXTBL) plus 0 to n-1.

TBL(1) IX(IDXTBL+0)
TBL(2) IX(IDXTBL+1)
TBL(3) IX(IDXTBL+2)
TBL(n) IX(IDXTBL+n-1)

The positional offset constants 0 to n-1 have been parameterized by using FORTRAN
variables containing constant values to reference offset table entries in many of the

ANOPP executive control structures.

3.3.1 System Table Types

Many of the tables and directories maintained by ANOPP system modules have a common
structure. This structure has two parts, a preface and a body. The preface describes the
table's current status and the body contains the entries, which may be fixed or variable
length depending on the particular table definition. A table which has this common struc-

ture is designated as a System Table. Executive Utilities are available for performing

various functions for a System Table.

3.3-1

There are three types of System Tables.

scribed below.

EXECUTIVE MODULES

3.3.1.1 System Table Type 1

Description:

entries. Each entry made in the table requires the same number of words.

The structure of the three types are de-

The System Table Type 1 structure provides for fixed length table

The positions

of words in the preface and the first word beyond the preface have been parameterized by

variables in the common block /XCVT/.

Format:

Preface

Body J

name
nae
nce
le

entryi

Common
Block

Position
System Table Type 1 Parameter
name NTNAME
nae NTMAX
nce NTCUR
le NTENT
entryl NTSTRT
entryi
entrynce
. not used currently
entr'ynae

name of table (Hollerith)

number of allocated entries (integer)
number of current entries (integer)
length of an entry in words (integer)
an entry of length le

3.3-2

/XCvT/

EXECUTIVE CONTROL STRUCTURES

The total length of a type 1 table is the sum of preface length and body length where
boedy length is the product of the number of allocated entries and the length of an entry.
For a type 1 table in dynamic storage at IDXT1l, the expression for its length, LENTI,

would be:

LENT1 = NTSTRT + IX(IDXT1+NTMAX)%IX(IDXT1+NTENT)
3.3.1.2 System Table Type 2

Description: The System Table Type 2 structure provides for variable length table
entries. The number of words required for an entry is not necessarily the same as any or
all of the other table entries. The user of this table structure must devise his own plan
to access the individual entries in the table, if there is:more than one entry in the
table. The positions in the preface and the first word beyond fhe preface have been
parameterized similar to type 1 tables with the exception of the fixed length of an entry

which has no meaning for type 2 tables.

Format:
Position Common
System Table Type 2 Parameter Block
. name NTNAME /XCVT/ i
Preface naw NTMAX
ncw NTCUR
not_used
(entry, NTSTRT
ﬂ entry
Body
. ’ naw-ncw
~
name - name of table (Hollerith)
naw - number of allocated words in body (integer)
new - number of current words in body (integer)
entry, - an entry of variable length

3.3-3

EXECUTIVE MODULES

The total length of a type 2 table is the sum of preface length and body length where
body length is the number of allocated words. For a type 2 table in dynamic storage at
IDXT2, the expression for its length, LENT2, would be:

LENT2 = NTSTRT + IX(IDXT2+NTMAX)
3.3.1.3 System Table Type 3

Description: The System Table Type 3 is characterized by forward chained, fixed
length entries. These entries are linked into one of three chains -- the used entry
chain, the free entry chain, or the other entry chain. Each entry contains a chain
control word, which serves as a forward pointer to its successor in the chain, followed by
space reserved for the user's entry data. A chain control word whose value is zero
indicates the end of the chain. Each position in the preface plus the first word of the

first entry have been parameterized by variables in common block /XCVT/.

Free entries may exist anywhere in the body of the table, not necessarily the last

entry. The table can accommodate up to three chains.

Format:
Position Common
System Table Type 3 Parameter Block
(name NTNAME /XCVT/
nae NTMAX
. ctl NTCUR
Preface < le NTENT
uecp NT3USD
fecp NT3FRE
L oecp NT3@TR
s entryl NT3STR
4 entryi
Body .
L entrynae

3.3-4

EXECUTIVE CONTROL STRUCTURES

name - name of table (Hollerith)

nae - number of allocated entries (integer)

ctl - current table length in words (integer)

le - length of an entry (integer)

uecp - used entry chain pointer index to the first entry in the used
entry chain

fecp - free entry chain pointer index to the first entry in the free
entry chain

cecp - other entry chain pointer index to the first entry in the other

entry chain

entry, entry of length le including the chain control word

The total length of a type 3 table is the sum of preface length and body length where
body length is the product of the number of allocated entries and the length of an entry.
For a type 1 table in dynamic storage at IDXT3, the expression for its length, LENT3,

would be:

LENT3 = NT3STR + IX{IDXT3+NTMAX)®*IX(IDXT3+NTENT)

©3.3-5

EXECUTIVE MODULES

3.3.2 Active Member Directory (AMD)

System Table Type: 3

Residence: Global Dynamic core; the IDX is IDXAMD in /XDBMC/ common block.

Primary Users: Data Member Manager and Data Table Manager open and close routines
(MMPPRD, MM@PWD, MMPPWS, MMCL@S, TM@PN, and TM@PNA) and XFMMM which logically closes

active members that remained open following termination of a functional module.

Description: The AMD is a table identifying all data members which are open to Data
Member Manager (MM) and provides a linkage to the NAME argument used to open a data member
and to the Data Unit Directory entry for the data unit named in the open member request.
Additionally, an AMD entry indicates whether a data member is open for input, output, or

both, and if open for output, whether it is open for direct or indirect writing.

The AMD is allocated during ANOPP initialization and remains resident throughout an

ANOPP run. Expansion of the AMD occurs as required.

Format:
Position Common
Active Member Directory Parameter Block
name g (see system table type 3
nae preface)
ctl
Preface le
: uecp
fecp
oecp
(entry
entryl data
cow
dmn TAMDMN /XDBMC/
entryi udp IAMUDP
dwf IAMDWE
Body ord IAM@RD
owr TAM@WR
entry
Lentrynae { data

3.3-6

EXECUTIVE CONTROL STRUCTURES

cew - chain control word linking the entry into the free or used chain
Other chain is invalid for the AMD.

dmn - data member name (Hollerith)

udp - Data Unit Directory entry pointer which is an index relative to
the beginning of the DUD

dwf -~ direct write flag

ord - open read control word which contains the IDX of the NAME array
used if the data member was opened for reading via MM@PRD

owr - open write control word which contains the IDX of the NAME array

used if the data member was opened for writing via MM@PWD or MM@PWS

Initialization: During ANOPP initialization XBSDBM creates the AMD using the follow-

ing variables:

1. The number of words of dynamic core initially allocated is determined using

the following formula:
LEN = NT3STR + NAEAMD¥*LENAME

NT3STR is a variable from /XCVT/ common block, and NAEAMD and LENAME are from

/XDBMC/ common block.

2. The AMD table preface is initialized as follows:
name = IDAMD from /XDBMC/ common block
nae = NAEAMD from /XDBMC/ common block
ctl = LEN which was computed in 1. above
le = LENAME from /XDBMC/ common block
uecp = zero
fecp = NT3STR+1
oecp = zero

3. The body of the AMD is initialized in system table type 3 format using sub-

program XT3IF,

Entry: An entry is made in the AMD each time a previously unopened data member is

opened via MM@PRD, MM@PWD, or MM@PWS.

Retrieval: The AMD used entry chain is searched each time a request to open a data
member occurs. If a matching entry is found and it is not open for the mode specified by
the open request, the entry is updated according to the mode (read or write) of the open

request.

The AMD is also searched by Data Table Manager when a data table is being opened to

prevent a data member from being open to both Data Member Manager and Data Table Manager.

3.3-7
{ExltilAHQ‘l
OF POORL Fagr 1

QUALITY

EXECUTIVE MODULES

Deletion: When a data member is closed for both input and output processing modes,

its AMD entry is cleared and linked into the free entry chain.

3.3-8

EXECUTIVE CONTROL STRUCTURES

3.3.3 Alternate Names Table (ANT)

System Table Type: 1

Residence: Global dynamic core; the IDX is LANT in /XCSFM/ common block.

Primary Users: Data Member Manager, Data Table Manager, and the Parameter Main-

tenance Functlons (XASKP, XPUTP, XGETP).

Description: The ANT is a table of reference names and corresponding alternate names
as specified on the EXECUTE CS. Alternate names exist only during the F.M. Processing

Phase when the specified F.M. is executed; at other times, the ANT is a null table.

Format:
Position Common
Alternate Names Table Parameter Block
name
nae (see System Table Type 1
Preface nce Preface)
le
rentr refname
Y1 altname
Body .
entr refname LANTN /XCSTM/
Ynee aTename LANTA

"

refname - reference name specified on EXECUTE CS (Hollerith)
altname - corresponding alternate name specified on EXECUTE CS (Hollerith)

Initialization: ANT is allocated for zero entries during the Initialization Phase

(XBS) and is reinitialized for zero entries upon completion of the Functional Module

Processing Phase.
1. The number of words of dynamic core initially allocated is determined by:

LEN = NTSTRT

NTSTRT is a variable from /XCVT/ common block.

EXECUTIVE MODULES

2. The ANT preface is initialized as follows:
name = NAMANT from /XBSC/ common block
nae = NAEANT from /XBSC/ common block
nce = NCEANT from /XBSC/ common block
le = LEANT from /XBSC/ common block

Entry: When an EXECUTE control statement is processed during Control Statement
Processing Phase, the ANT is allocated in GDS for exact number of entries required. An
entry for each reference/alternate name specified is made and the values for nae and nce

are updated.

Retrieval: Utility XFAN (fetch alternate name) provides retrieval. MM and TM user
calls and the utilities XPUTP, XASKP, and XGETP retrieve alternate names automatically ¢n

each call.

Deletion: All entries deleted upon completion of the functional module specified on

the EXECUTE control statement by the XFMANT module.

3.3-10

EXECUTIVE CONTROL STRUCTURES

3.3.4 Data Table Directory (DTD)

System Table Type: 3

Residence: Global dynamic core; the IDX is IDXTD in /XDTMC/ common block.

Primary Users: Data Member Manager and Data Table Manager open and close modules
(MM@PRD, MM@PWD, MM@PWS, TM@PN, TM@PNA, TMCL@S) and XFMTM which logically closes data

tables left open following termination of a functional module.

Description: The DTD identifies all data tables, both open and closed, which are
core resident at any point in time during an ANOPP run. A DTD entry contains a data unit
and data member name, which uniquely identify a data table, and an IDX variable which is

used in the following two ways:

1. VWhen a data table is open, the IDX variable contains the IDX to the NAME
argument used in opening the table and the third word of the NAME argument
contains the IDX to the data table.

2. When a data table is closed, the IDX variable contains the IDX to the
data table.

The DTD is allocated during ANOPP initialization by XBSDBM and remains resident until
the ANOPP run completes. The DTD cannct be expanded dynamically and therefore ANCPP will
terminate abnormally if the user tries to simultaneously open more data tables than there

are entries in the DTD.

©3.3-11

SO \J\"‘l\
R < O QUM

|)*..J

Format:

Preface <

Body

(name

EXECUTIVE MODULES

Data Table Directory

nae
ctl
le
oecp
fecp
cecp

-~

entry1 entry
data

cew
entry. dun

. dmn
idx

data

entrynae ; entry

Position Common
Parameter Block

(See System Table Type 3
Preface)

ITEDUN /XDTMC/
ITEDMN
ITEIDX

oecp - open entry chain pointer index to the first entry in the open entry chain
fecp - free entry chain pointer index to the first entry in the free entry chain
cecp - closed entry chain pointer index to the first entry in the closed entry

chain

There are three entry chains in the body of the DTD; the "open" entry chain, the

"free" entry chain, and the "closed" entry chain. Entries in the open entry chain contain

the following entry data:

cew
dun
dmn
idx

- chain control word linking the entry into the open chain

name of the data unit on which the data table resides

name of the data member which contains the data table

index, relative to /XAN@PP/ common block, of the NAME argument

Entries in

Zero.

used in opening the data table

the free entry chain have only a chain control word and the entry data is

©3.3-12

EXECUTIVE CONTROL STRUCTURES
Entries in the closed entry chain contain the following entry data:

cew - chain control word linking the entry into the closed entry chain

dun - as described previously

dmn - as described previously

idx - index, relative to /XAN@PP/ common block, of the data table which
is located in global dynamic core

Initialization: During ANOPP initialization, XBSDBM creates the DTD using the

following:

1. The number of words of dynamic core initially allocated is determined using

the following formula:

LEN = NT3STR + NAETD #* LENTDE, where
NT3STR is a varible from /XCVT/ common block, and NAETD and LENTDE are from

/XDTMC/ common block.

2. The DTD preface is initialized as follows:

name = from IDTD in /XDTMC/ common block
nae = from NAETD in /XDTMC/ common block
ctl = from LEN computed in 1. above

le = from LENTDE in /XDTMC/ common block
oecp = 0

fecp = 1 + NT3STR

cecp = 0

Entrv: A new entry is made in the DTD when a data table which is not currently in
Y Y

the open entry chain or the closed entry chain is opened.

Retrieval: Entries are retrieved from both the open and closed entry chains by Data
Table Manager (DTM) open and close modules. The DTM open data table modules (TM@PN,
TM@PNA) link DTD entries from the closed entry chain into the open entry chain and the

close data table module {TMCL@S) links from the open to the closed entry chain.

Deletion: Data Member Manager (DMM) open data member modules (MM@PRD, MM@PWD, and
MM@PWS) also search the open and closed entry chains in the DTD for a data table residing
on a particular data unit and member. However, if DMM finds an entry, either the DMM
module involved abnormally terminates ANOPP if the entry is in the open entry chain or it
frees the data table from core and links the DTD entry from the closed to the free entry

chain.

*. 3.3-13

EXECUTIVE MODULES

3.3.5 Data Unit Directory (DUD)

System Table Type: 3

Residence: Global dynamic core; the IDX is IDXUD in /XDBMC/ common block.

Primary Users: All DBM control statements, the UPDATE control statement, all Data

Member Manager modules, and Data Table Manager open data table modules.

Description: The DUD identifies all data units which are available to ANOPP at any
one time during ANOPP execution. A DUD entry contains a copy of the data unit header for
the unit, an IDX linking the entry to the external file information table and buffer, and

other identification and control information.

The DUD is allocated during ANOPP initialization by subprogram XBSDBM and remains
resident until ANOPP termination. The DUD must be one of the control structures allocated
at the beginning of global dynamic core and may not be expanded. This insures that the

DUD does not move during DSM consolidation of global dynamic core.

3.3-14

EXECUTIVE CONTROL STRUCTURES

Format:
Position Common
Data Unit Directory Parameter Block
name
nae (See System Table Type 3
Preface ctl Preface)
le
uecp
fecp
oecp
entry, entry
data
(cew
id IUHID /XDBMC/
af Data Chart JIyHAF
nwa Header TUHNWA
Body < entryi wa . JUHMDA
1en J TUHMDL
< dun) IDUDUP
efn _ IDUEFN
cbi $Data Unit IDUCBI
pbi Control IDUPBI
omc Info. IDUOMC
9 dwf J IDUDWF
entry
L entrynae{ data
entry data:
cew - chain control word linking the entry into the free or used chain.
The other chain is invalid in DUD.
id - Data Unit Header identifier (Hollerith)
af - integer ARCHIVE flag, if equal to zero, write is permitted on the
data unit. If equal to 1, then writing is not permitted.
nwa - integer next word address that is available for writing on the data
unit
wa - integer word address of the Data Member Directory on the data unit
len - integer length (in words) of the Data Member Directory
dun - data unit names used for the data unit in the current ANOPP run
efn - external file name assigned to the data unit by the operating system
cbi - the IDX to the external file information and buffer in global dynmamic
core
pbi - the "previous buffer index" contains the value of cbi from the previous

1/0 operation. It is used to determine if the IDX to the buffer has
been changed since the last I/0 operation

ome - integer open member count; indicating the number of data members
currently open on the data unit

3.3-15

EXECUTIVE MODULES

dwf - integer direct write flag which indicates that a data member is open
to write directly on the unit

Initialization: During ANOPP initialization, subprogram XBSDBM creates the DUD using

the following:

1. The number of words of dynamic core initially allocated is determined using

the formula:

LEN = NT3STR + NAEUD * LENUDE, where
NT3STR is a variable from /XCVT/ common block, and NAEUD and LENUDE are from

/XBDMC/ common block.

2. The DUD preface is initialized as follows:

name = from IDUD in /XDBMC/ common block
nae = from NAEUD in /XDBMC/ common block
ctl = from LEN computed in 1. above

le = from LENUDE in /XDBMC/ common block
uecp = 0

fecp = NT3STR + 1

oecp = 0

3. The body of the DUD is initialized using subprogram XT3IF which builds the

free entry chain.

Entry: A new entry is made in the DUD whenever a CREATE, ATTACH, or L@AD control
statement is processed. Also, use of Data Member Manager's (DMM) open for indirect
writing facility causes creation of a temporary entry in the DUD for each data member
opened.

Retrieval: The DUD is searched each time a DBM control statement, an UPDATE or a
Data Table Manager open or close request is processed. Also, when a data member is open
indexes to the related DUD entry (or entries if open for indirect write) are retained in
the member's AMD entry and MCB. These indexes are used to directly access the DUD entry

for all DMM input and output processing.

Deletion: Entries are deleted from the DUD by the DETACH and PURGE control state-
ments, and, when a data member which was open for indirect writing is closed, its temporary

(scratch) data unit is purged and the DUD entry is deleted.

3.3-18

EXECUTIVE CONTROL STRUCTURES

3.3.6 Member Control Block (MCB)

System Table Type: Not applicable

Residence: Global dynamic core; the IDX is the third word of the NAME argument used

in opening the data member.
Primary Users: Data Member Manager Modules.

Description: The MCB is the primary control structure used in building and accessing
data members. It provides indexes to the Data Unit Directory and Active Memory Directory
entries which relate to the data member and control information regarding current record
being read or written and position within record. In addition, it contains the Data

Member Header, Record Directory, and one Record Subdirectory.

The MCB is allocated when a data member is opened and is resident until the member is
closed. Reallocation of the MCB takes place only when opening a data member for reading.

Expansion is required then to provide space for a Record Subdirectory.

Format:
id
len
Member indud
Control inamd
Information < inrd
inrs
crn
TViC
infst
\ wadmh
Data (see Data Base
Member Structures)
Header
(see Data Base
Record g‘ Structures)
Subdirectory

The MCB consists of three separate structures which are necessary to control member
data input and output:
1. Member Control Information (MCI)

2. Data Member Header (DMH), and
3. Record Subdirectory (RS).

<. 3,3-17

EXECUTIVE MODULES

Since the DMH and RS are discussed in the Data Base Structures section, only the MCI

is described here.

MCI:
id ~ MCB identifier (Hollerith)
ien - integer length (in words) of the MCB
indud - index, relative to the beginning of the DUD, to the DUD entry
describing the data unit to which the data member belongs
inamd - index, relative to the beginning of the AMD, to the AMD entry

for the data member described by the MCB
inrd - index, relative to the beginning of the Master Record Directory
(RD), to the RD entry for the Record Subdirectory (RS) current

in the MCB

inrs - index, relative to the beginning of the RS, to the RS entry for
the current data record

crn - integer current record number; MMSKIP and MMP@SN modify this field
to provide random accessing of data

rwe - record word count; this field is used to determine the current

position within a record for partial record gets and puts. It
contains the count of the number of words transferred to or from
a record
infst - FST index is used for element gets and puts (MMGETE and MMPUTE) to
retrieve element type and length from the Format Specification Table
(FST) in the DMH
wadmh - integer word address of the DMH, provides MMCL®S with the address
at which the DMH is to be written if the member is open to write,
or zero if its open to read

Initialization: Not applicable

Entry: Not applicable
Retrieval: The MCB is accessed and modified during every DMM operation.

Deletion:l Not applicable

% 3.3-18

EXECUTIVE CONTROL STRUCTURES

3.3.7 Member Description Blocks Table (MDBT)

System Table Type: 3

Residence: Global dynamic storage; the IDX is MXMDB in /XCS/ common block.

Primary Users: XRT module (Primary Edit Phase) to initialize an entry for an Mxxx
name assigned corresponding to a CALL control statement. XRT also constructs the MOO1

member and puts the MDB in executable format.

XCA module (Secondary Edit Phase) to initialize entries as Mxxx names are assigned
and to construct the Mxxx for the CALL being executed and put the corresponding MDB in

executable format.

Description: Contains a Member Description Block (MDB) entry for each Mxxx type data
member for which an Mxxx name has been assigned. Each entry centains pertinent informa-
tion about the member, such as member name, number of current CS record in execution, Mxxx
that called this Mxxx, maximum length of a CS record, length of label record. The MDB

settings indicate if the Mxxx member has been constructed and exists on XSUNIT.

Format:
Member Description Blocks Position Common
Table Parameter Block
name
nae (See system table type
Preface nce 1 Preface)
le
entry, entry
.
(Mo01) data
Body nm MNAME /XCS/
entryi cr MCUR
cll MCALL
< (Mxxx) carl MRL
Irl MLL
entrynce entry
L (Mxxx) data

-, 3.3-19

EXECUTIVE MODULES

entry data:

First entry:

nm - MO0l - name of root member (Hollerith)
cr - number of current CS record in execution
cll - entry not applicable to MO0l

csrl - maximum length of a CS record for MOO1
1rl - number of words in label record for M0OOl

Subsequent entries:

nm - name of’ Mxxx data member (Hollerith)

cr - number of current CS record in execution

cll - name of Mxxx data member that called this Mxxx member in current
execution

csrl - maximum length of a CS record for Mxxx

1rl - number of words in label record for Mxxx

Initialization: The MDBT is allocated and the MDB entry for the MO0l member is

initialized by XBS.

1. The number of words of dynamic core initially allocated is determined using
the formula:
NWDS = LPREF + NAEMDB % LEMDB, where

LPREF, NAEMDB, LEMDB are in /XBSC/ common block.

2. The MDBT is initialized as follows:

name = NAMMDB from /XBSC/ common block
nae = NAEMDB from /XBSC/ common block
nce = NCEMDB from /XBSC/ common block
le = LEMDB from /XBSC/ common block

entryl :

nm = NMOOl1l from /XBSC/ common block

cr =0

cll = blank

csrl =0

1rl =0

Entry: The MOOl MDB entry is put into executable format during the Primary Edit
Phase by XRT. The csrl and 1lrl values are entered for M0O1 by XRT when MO0l is built.
Member Description Block entries for other Mxxx members are added to the MDBT as Mxxx
member names are assigned during the Primary and Secondary Edit Phase whenever a CALL
control statement is edited. When the MDB is added, nm is defined as the Mxxx name
assigned, cll the Mxxx calling member, and all other entries are set to zero (entry put
into initialized format). The ¢srl and 1rl values will be entered in Fhe MDB (entry put

7 3.3-20

EXECUTIVE CONTROL STRUCTURES

into executable format) the first time the CALL control statement is executed since the

Mxxx member is built on the first execution.

Retrieval: Upon entry to the CS Processing Phase (XCSP), the maximum CS record
length and label record length are retrieved from the MDB for the Mxxx member in current
execution. These lengths are used to allocate LDS blocks for storing CS records and the
label record for the Mxxx in current execution. XCSP also retrieves the number of the
current CS record in execution from the MDB for the Mxxx in current execution, and uses
that value in positioning to the next CS record to be executed. Upon completion of
execution of an Mxxx member, XRE processes the RETURN CS and redefines the Mxxx member in
current execution as the calling member name found in MCALL of the MDB for the current

Mxxx.

Deletion: Once an MDB entry is made in the MDBT it is never deleted.

PAGE 15

ORIGINAL QUALITY

OF POOR
3.3-21

EXECUTIVE MODULES

3.3.8 Sequential Library File Directory (LFD)

System Table Type: 1

Residence: Global dynamic core; the IDX is IDXLFD in /XDBMC/ common block.
Primary Users: UNL@AD (XUN), L@AD (XLD), and DRPP (XDR) control statements.

Description: The LFD is a table of sequential library file names that is used by the
UNL@AD, L@AD, and DROP control statements to insure the integrity of sequential libraries
created or used in a particular ANOPP run. Initially allocated during system initializa-
tion, the LFD is resident throughout an ANOPP run and is expanded whenever all allocated
entries are in use and additional entries are required. Entries in the LLT are sorted in

ascending binary sequence by data member name within data unit name.

Format:
Sequential Library File Position Common
Directory Parameter Block
id
Preface nae (See system Table Type 1
cne Preface)
le
(Entryl { 1fn
Body Entry_ . { 1fn LFDEFN /XTBMC/
Entrynae { 1fn
X
entry data:

1fn - sequential library file name

3.3-22

EXECUTIVE CONTROL STRUCTURES

Initialization: During ANOPP initialization, XBSDBM creates the LFD using the

following variables:

1. The number of words of dynamic core initially allocated is determined using

the formula:

LEN = NTSTRT + NAELFD * LENLFE, where
NTSTRT is a variable from /XCVT/ common block, and NAELFD and LENLFE are

from /XDBMC/ common block.

2. The LFD table preface is initialized as follows:
id = IDLFD from /XDBMC/ common block
nae = NAELFD from /XDBMC/ common block
cne = zero
le = LENLFE from /XDBMC/ common block

3. The body of the LFD is set to zero.

Entry: A new LFD entry results when a unique library file name is encountered in

processing a L@AD or UNL@AD control statement.

Retrieval: Entries are sequentially retrieved from the LFD by UNL@AD, L@AD, and
DRPP to establish the existence or non-existence of a library file name and their re-

spective control statements.

Deletion: Entries are deleted from the LFD by the DR{P control statement.

3.3-23

EXECUTIVE MODULES

3.3.9 Sequential Library Load Table (LLT)

System Table Type: 1

Residence: Local dynamic core; the IDX is IDXLLT in /XSLF/ common block.
Primary Users: LPAD (XLD) control statement.

Description: The LLT is a table of data unit and data member names which is used to
control loading and renaming of data unit and membérs from a sequential library file.
Since the LLT is local dynamic core resident, its life span is limited to each period of
XLD execution. Expansion occurs at the rate defined by NEXPND in /XCVT/ common block when

additional table entries are required.

Format
Sequential Library Position Common
Load Table Parameter Block
id
Preface nae (See system table type 1
nce Preface)
le
o Entry, entry
data
odu LLDODU /XSLF/
Body Entrynce odm LLDODM
< ndu LLDNDU
ndm LLDNDM
Entry entry
nae data
-
entry data:
odu - old data unit name
odm - old d:ta member name .
ndu - new dcta unit name
ndm - new data member name

3.3-24

EXECUTIVE CONTROL STRUCTURES

Initialization: The LLT is defined at the beginning of XLD execution by subprogram

XLDBGN using the following variables:

1. The number of words of dynamic core initially allocated is determined using

the formula:

LEN = NTSTRT + NAELLT * LENLTE
NTSTRT is defined in /XCVT/ common block, and NAELLT and LENLTE are defined

in /XSLF/ common block.

2. The LLT table preface is initialized as follows:

id = IDLLT from /XSLF/ common block
nae = NAELLT from /XSLF/ common block
nce = zero

le = LENLTE from /XSLF/ common block

3. The body of the LLT is initially set to zero.

Entry: An entry is made in the LLT for each data unit and data member named on the
L@AD control statement, or, if none were named, for each data unit name in the Library
Directory Record in the sequential library file (see Subsection 3.4.5.2). If a data unit
or member is renamed on a L@AD control statement then its new name is entered along with

the old, otherwise the old and new names will be the same.

Retrieval: Entries are retrieved serially from the LLT as the data units to which
they refer are identified and loaded from a sequential library file by subprogram XLD.

The new data unit and member names will be used to create the data member.

Deletion: Entries are not deleted from the LLT.

3.3-25

EXECUTIVE MODULES

3.3.10 Sequential Library Unit Table (LUT)

System Table Type: 1

Residence: Local dynamic core; the IDX is IDXLUT in /XSLF/ common block.
Primary Users: LPAD (XLD) control statement.

Description: The LUT is a table of data unit names with their related external file
names (EFN). It is used to validate their uniqueness against the Data Unit Directory

(UD), (see Subsection 3.3.4) and to create UD entries for the data units being loaded.

Allocation of the LUT is done by XLDBGN at the beginning of XLD execution and expan-
sion will occur if the number of unique data units being loaded exceeds the number of

allocated entries. Prior to termination, XLD frees the LUT from local dynamic core.

Format:
Sequential Library Position Common
Unit Table Parameter Block
id
Preface nae (see system table type 1
nce Preface)
le
f
Entryl entry
data
Entrynce dun LUTDUN /XSLF/
Body ¢ efn LUTEFN
Entry entry
\
entry data:

dun - data unit name
efn - external file name

3.3-26

EXECUTIVE CONTROL STRUCTURES

Initialization: During XLD initialization, XLDBGN creates the LUT in local dynamic

core using the following variables:

1. The number of initially allocated words of dynamic core is determined using

the formuia:
LEN = NTSTRT + NAELUT #% LENUTE, where

NTSTRT is defined in /XCVT/ common block, and NAELUT and LENUTE are defined

in /XSLF/ common block.

2. The LUT table preface is initialized as follows:

id = IDLUT from /XSLF/ common block
nae = NAELUT from /XSLF/ common block
nce = zero

le = LENUTE from /XSLF/ common block

3, The body of the LUT is initially set to zero.

Entry: An entry is made in the LUT for each new data unit name encountered on the
LPAD control statement, or, if all data units are to be loaded, the names of all data
units defined in the Library Directory Record (see Subsection 3.4.5.2) from the sequential
library file.

Retrieval: Entries are retrieved serially from the LUT and are used by XLDCDU to
create Data Unit Directory entries (see Subsection 3.3.4) prior to the loading of data

members.

Deletion: Entries are not deleted from the LUT, but the LUT itself is removed from

core when processing is complete.

g ‘ﬁ?}>v{ fi&
R A E‘\}j ;F“S fg&/,

3.3-27

EXECUTIVE MODULES

3.3.11 User Parameter Table (UPT)

System Table Type: 1

Residence: Global dynamic core; the IDX is LUPT in /XCSFM/ common block.

Primary Users: EM modules XPA {entry), XPA, XIF (retrieval). Utilities XPUTP

(entry), XGETP, XASKP (retrieval).

Description: The UPT is a table of user parameters established in the control
statement stream by the PARAM control statement or in a functional module by the Parameter
Maintenance Function XPUTP. The parameter values are numerical, logical, or character

string values which are maintained in the User Parameter Table or the User String Table.

Valid UPT Table Entries:

Type Code Type Value Length (words)
1 Integer 1
2 Real Single
Precision 1
3 Real Double
Precision 2
6 Logical 1
-n) string of n (n+7)/8
char (A8)

The fixed length table entry of four words is provided as the maximum length required
for all implemented types except character strings with more than 16 characters. These
character string values having‘more than 16 characters are maintained in the User String
Table, and the UPT value entry points to the UST entry. Complex and complex double values

have not been provided for in the UPT.

Once a user parameter has been established in the UPT, it may be subsequently re-
trieved or changed in the control statement stream or in a functional module. The table
entries remain throughout ANOPP. Once established, an entry is never deleted from the set
of known parameters. The user parameters provide a link in the communication between the

control statement stream and a functional module.

3.3-28

EXECUTIVE CONTROL STRUCTURES

Format:
Position Common
User Parameter Table Parameter Block
name
Preface nae (see system table type 1
nce Preface)
le
P
entry, entry
data
nm LUPTN /XCSFM/
Body ﬁ entry . type LUPTT
val/ptr LUPTV
entry .. entry
L data
entry data:
nm - name of user parameter
type - integer type code (valid types are 1, 2, 3, 6, -n)
val - if (type .GT.0) or (type=-n and n.LE.16) then value is located in
one or two words as required
ptr - if type = -n and n.GT.16 pointer to position in UST of the string

relative to start of UST.

Initialization: During the ANOPP Initialization Phase (XBM) the UPT is created using

the following: .
1. The number of words of dynamic core initially allocated is determined using
the formula:

NWDS = LPREF + NAEUPT % LEUPT, where

LPREF, NAEUPT, and LEUPT are in /XBSC/ common block.

2. The UPT is initialized as follows:
name = NAMUPT from /XBSC/ common block
nae = NAEUPT from /XBSC/ common block
nce = NCEUPT from /XBSC/ common block
le = LEUPT from /XBSC/ common block

3.3-29

EXECUTIVE MODULES

Entry: Entry is made in the CS Processing Phase by PARAM CS or in the Functional
Module Processing Phase by XPUTP., 1If table becomes insufficient for further entries, GDS

block size can be expanded via DSMX by a factor of NEXPND (/XCVT/ common block).

Retrieval: Retrieval from UPT accomplished in the CS Processing Phase by the PARAM
and IF control statements or in the Functional Module Processing Phase by the Parameter

Maintenance Functions XGETP and XASKP.

Deletion: Once established in the UPT, a parameter is never deleted from the set of
known user parameters. There is, therefore, no need for consolidation or reuse of free

space.

3.3-30

EXECUTIVE CONTROL STRUCTURES

3.3.12 User String Table (UST)

System Table Type: 2

Residence: Global dynamic core; the IDX is LUST in /XCSFM/ common block.

Primary Users: EM modules XPA (entry), XPA, XIF (retrieval). Utilities XPUTP

(entry), XGETP (retrieval).

Description: The UST is a table of the user parameter values which are character
strings having more than 16 characters. Entries to this table are made through the
control statement stream by the PARAM control statement or in a functional module by the
Parameter Maintenance Function XPUTP. A UST entry is associated with an entry in the User
Parameter Table (UPT) which names the user parameter, gives its type code (-n) and points

to the start of the value entry in the UST.

The number of words required in the UST for the character string is implied by the
integer type code in the corresponding UPT entry. Once an entry has been made in the UST,
it subsequently may be retrieved or changed in the control statement stream or in a
functional module. If the current character string value is being changed and the new
value is (a) a type other than character string, (b) a character string with 16 or fewer
characters, or (c) a character string requiring more words than the current value, then
the current entry in the UST is "delinked" as the pointer in the UPT is changed or over-
written with a value. There is no reuse of the "delinked" character string value or its
space in the table. A new entry into the UST always begins at the next available word.
Assuming that NC is the number of characters in the character string, then ABS(NC)/NCPW =

Q + R (NCPW = number of characters per word). The Q words are copied to the UST. Word Q

+ 1 contains the R characters, left justified, blank-filled.

- pAGE IS
ORIGINAL PAG
OF POOR QUALITY!

3.3-31

EXECUTIVE MODULES

Format:
Position Common
User String Table Parameter Block
name
Preface naw (See system table type 2
new Preface)
(not used)
({ characters
entryl
Body .
< entryncw { characters
entrynaw { characters
\\
entry data:

characters - character string (A8)
number of words is implied by the integer type code in the
corresponding UPT entry.

Initialization: During the ANOPP Initialization Phase (XBM) the UPT is created using

the following:

1. The number of words of dynamic core initially allocated is determined using

the formula:

NWDS = NPREF + NAWUST, where

LPREF and NAWUST are in /XBSC/ common block.

2. The UST is initialized as follows:

name = NAMUST from /XBSC/ common block
naw = NAWUST from /XBSC/ common block
new = NCWUST from /XBSC/ common block

Entry: Entry is made in the CS Processing Phase by the PARAM control statement or in
the Functional Module Processing Phase by XPUTP. If the table becomes insufficient for
further entries, GDS block size can be expanded via DSMX by a factor of NEXPND (/XCVT/

common block).

3.3-32

EXECUTIVE CONTROL STRUCTURES

Retrieval: Retrieval from UST is accomplished in the CS Processing FPhase by the
PARAM and IF control statements or in the Functional Module Processing Phase by the

Parameter Maintenance Function XGETP.

Deletion: Deletion from the UST is a result of the following situation. The current
length of the user parameter character string is n where n is greater than 16, and the

value is to be changed to one of the following:

1. character string with 16 or fewer characters
2. a type other than character string
3. a character string with more than 16 characters which will not fit

in the currently allocated UST entry.

The current entry in the UST is "delinked" by the pointer in the UPT entry being

changed or overwritten with a value.

ORIGINAT, PAGE g

OF POOR QUALITY 3.3-33

EXECUTIVE MODULES

3.4 EXECUTIVE DATA BASE STRUCTURES

This section includes a graphical layout and a usage description of all data base

structures used and referenced by executive modules.

A data base structure is a table, a directory, or any other information block which
resides on a data unit or external file. The general organizational structure of a data

unit and a data member are alsc included as data base structures.

EXECUTIVE MODULES

3.4,1 Data Unit

A Data Unit is the highest level of the ANOPP DBM data structure that can be refer-
enced directly using ANOPP control statements. It is physically stored on direct access

storage devices and is uniquely identified within an ANOPP run by a data unit name.

Since a data unit resides on a file which is identifiable outside the ANOPP system,
its data unit name may be changed from one ANOFP run to another by relating a new data

unit name to the same external file name.
3.4.1.1 Data Unit Structure

Residence: Random Access Secondary Storage Devices
Primary Users: Data Base Manager (DBM)

Description: A data unit is a set of data members which is assigned via DBM tc an
external file defined by the host computer operating system. It contains a Data Unit
Header (DUH) and Data Member Directory (DMD) which contain the information necessary to

access and add data members.

Format:

Data Unit Structure

DUH

DMD

optional
data members

Initialization: When initially created, a data unit contains only the DUH and DMD,

3.4,1.2 Data Unit Header (DUH)

Residence: Data Units

Primary Users: Data Base Manager (DBM) Subprograms

3.4-2

EXECUTIVE DATE BASE STRUCTURES

DescriEtion: The DUH serves as both a control structure and a data base structure.
Although it primarily resides on data units, during ANOFPP execution a copy is retained in

the Data Unit Directory entry for each data unit.

The DUH contains the information required to access the Data Member Directory (and
thereby all data members) and the address of the next word that is available for output.
Also, the DUH contains the Archive Flag which can logically inhibit outputting to a data

unit.

Format:
Position Common
Data Unit Header Parameter Block

id IUHID /XDBMC/
arflg IUHAY
nwa TUHNWA
mda TUHMDA
mdl IUHMDL

id - data unit header identifier

arflg - unit archive flag

nwa - next write address

mda - data member directory address

mdl - data member directory length

Initialization: When first generated via execution of a CREATE control statement or

a call to XCTDU, the DUH has the following values:

id = IDUH from /XDBMC/ common block

arflg = 0

nwa = LENUH+l1 where LENUH is from /XDBMC/ common block
mda = nwa

mdl = 0

Following creation and output. of a Data Member Directory, the mdl field will be equal

to the DMD length and the nwa field will equal mda+mdl.
3.4.1.3 Data Member Directory (DMD)

System Table Type: 1

Residence: Data Units

Primary Users: DBM CREATE control statement, Data Member Manager open read {MM@PRD),

and close write (MMCL@S) requests.
3.4-3

EXECUTIVE MODULES

Description: The DMD identifies all data members which are written to its data unit
and contains the word address and length of each Data Member Header (DMH). When a data
member is opened for reading, MM@PRD searches the DMD for the name of the data member. If
the data member is found, its DMH address and length are used to read the DMH into the
Member Control Block. When a data member that was opened to write is closed an entry is

made (or updated) for it in the DMD.

Format:

Position Common
Data Member Directory Parameter Block

id :
Preface nae (See system table type 1
nce Preface)

le

entryl entry
data

~

mha MDEMHA
mhl MDEMHL

Body
4 entryi

{ dmn MDEDMN /XDRMC/

data

entrynae{ entry
-

dmn ~ the data member name
mha - the Data Member Header (DMH) address
mhl -~ the length of the DMH

Initialization: When initially created the DMD is zerced and its preface is initia-

lized as follows:

id = IDMD from /XDBMC/ common block
nae = NAEMD from /XDBMC/ common block
nce = 2zero

le = LENMDE from /XDBMC/ common block

The length in words of the DMD is computed as follows:
LEN = NTSTRT + NAEMD % LENMDE

where NTSTRT is from /XCVT/ common block.

EXECUTIVE DATA BASE STRUCTURES

3.4.2 Data Member

A data member is an ordered set of information which resides, in a logically con-
tiguous fashion, on a data unit. The information can be viewed as two subsets of data,

. (1) user data and (2) non-user or Data Member Manager (DMM) data.

User data are those data which are generated by an Executive or Functional Module and
passed to DMM for storage and subsequent retrieval. The form and content of these data

base structures is discussed elsewhere.

DMM data are structures which provide information about the form, location, and
amount of user data stored as a data member on a data unit. These structures are de-

scribed in the following paragraphs.
3.4.2.1 Data Member Structure

Residence: Data Units
Primary Users: Data Member Manager (DMM)

Description: A data member is composed of a Data Member Header (DMH), Record Sub-

directories (RS), and data records which are addressed using the RS.

Format: .

DMH

RS

user
data
records
1l thrun

RS

OPIETTAT FAGE B
e PO QUALITY user

data
records
n+l thru last

3.4-5

EXECUTIVE MODULES

DMH - the data member header is variable length and contains the Master Record
Directory (RD) which indexes the RS.

RS - the record subdirectories are variable length with their number and

length dependent on the maximum number of records specified by the user
when the member was created.

Life Span: The life span of a data member on an external storage device is dependent

upon the user's retention of the data unit to which it is assigned.

Initialization: Not applicable

3.4.2.2 Data Member Header (DMH)

Residence: Data Members
Primary Users: Data Member Manager (DMM)

Description: The DMH is the source of quantitative, historic, and reference informa-
tion for a data member. It consists of a Preface, Format Specification Image, Format
Specification Table, and Record Directory. When a data member is opened for writing, the
DMH is created as part of the Member Control Block (MCB), Section 3.3.6, and space is
reserved for it at the beginning of the data member. As the data member is written,
information on number of records written, maximum record length, and number of Record
Subdirectories written is stored in the DMH. Closing the data member causes the DMH to be
written on the data unit preceeding the other data member data. Subsequent opening of the

data member for reading will cause the DMH to be read into the MCB.

3.4-6

EXECUTIVE DATE BASE STRUCTURES

Format:
Position Common
Data Member Header Parameter Block
-
dmn MHDMN /XDBMC/
len MHLEN
mnr MHMNR
cnr MHCNR
mrl MHMRL
DMH fhl MHFHL
Preface < vtl MHVTL
date MHDATE
time MHTIME
rdl MHRDL
nrs MHNRS
L fsil MHFSIL
fstl MHFSTL
FsI MHESI
Body FST
RD
dmn - data member name
len - member header length
mnr - maximum number of data records specified in the open member request
enr - current number of user records
mrl - maximum record length
fhl - fixed header length
vtl - length of repeated variable trailer
date - date member created in form YY/MM/DD
time - time member created HH.MM.SS
rdl - record directory record length
nrs - number of record subdirectories
fsil - format specification image length
fstl - format specification table length
PSI - format specification image
FST - format specification table
RD - record directory

Initialization: When the DMH is first created, the following fields are initialized:

dmn = NAMA(2) from /XDBMC/ common block

jen = MHSFSI + FSIL + FSTL + RDL, where MHSFSI is from /XDBMC/ common block
and FSIL, FSTL, and RDL are entries in the data member header

mnr = 10000 if mnr specified open member request is zero; otherwise, unchanged

enr = 0

mel = O

fh1 = LENFH where LENFH is computed by MMBFST and js summation of data element

lengths of the fixed part of format specification if FSI is non-zero;

otherwise zero

vtl = LENRG where LENRG is the summation of the lengths of the elements
in the variable part of the record if the FST specifies a variable
length formatted record; otherwise zero

3.4-7

EXECUTIVE MODULES

date = by IDATE

time = by ITIME 1

rdl = LENRDB = (MNR)® + 2.99999

nrs = 0

fsil = LENFSI length of format specification image as determined by MMBFSI
fstl = LENFST length of format specification image as determined by MMBFST

The initialization of FSI, FST, and RD are discussed in their subsections.
3.4.2.3 Format Specification Image (FSI)

Residence: Data Member Headers

Primary Users: Data Member Manager (DMM) open write routines, L@AD, UNL@AD, and

UPDATE control statements.

Description: The FSI cannotAbe described with the tabular presentation used for
other data base structures. It is a Hollerith string of ANOPP data type descriptors which
are separated by commas. The data types may be grouped using parentheses. Single data
types and groups may be prefixed by an integer character string or an asterisk to indicate
repetition. The FSI is always terminated with a dollar sign. If the data member which
the FSI describes is unformatted then the FSI will be one word of binary zeroes. The FSI
is initially created by subprogram MMBFSI from the format specification provided on DMM
open write requests (MMPPWD, MMPPWS) and is stored in the Data Member Header. The L@AD,

UNLZAD, and UPDATE control statements retrieve it from there for their own use.
Format: Not applicable

Life Span: The FSI is core resident in a MCB when a data member is open. The in-
core life span of a particular FSI is, therefore, dependent upon how long the data member

remains open to a module.

The life span of the FSI on secondary storage devices is dependent upon the retention

period of the file on which its data member and unit reside.

Initialization: Not applicable

3.4-8

EXECUTIVE DATA BASE STRUCTURES -
3.4.2.4 Format Specification Table (FST)

Residence: Data Member Headers

Primary Users: Data Member Manager (DMM) get and put element routines (MMGETE,

MMPUTE)

Description: The FST is an array of element descriptors which specify the format of
records contained on, or to be written to, a particular data member. The element de-

scriptors have the following formats:

Single Element Descriptor

A single element descriptor is one word in length and its value is less than
seven and not equal to zero. The length of the element is determined as follows:

1. If the element type (value) is greater than zero then the value is
used as an index to the NDTCL table in /XCVT/ common (ELEN = NDTCL(VALUEL,3)).

2. If the element descriptor value is negative then the value is the absclute

value of the element descriptor value and the length is based on the
NCPW variable in /XCVT/ (ELEN = (-VALUE+NCPW-1)/NCPW).

Repeated Group Descriptor

A repeated group descriptor is built when the users format requires one or more
elements or element groups to be repeated in the record. Nesting of repeated groups
is permitted. The repeated group descriptor consists of a three word header, a group
of element descriptors of any type, and a two word trailer.
Several subprograms were written to manage the FST for DMM. They are:
1. MMGED -~ get next element description
2., MMGNEW - determine the number of elements that fit an array of NWDS words

3. MMGNWE - determine the number of words required to write the next NEL elements

b, MMSFEI -~ reset the FST element index based on the number of words read or
written in the current record

3.4-9

EXECUTIVE MODULES

Format: The following format represents a user format of the type I,

RS, 3(A3,RS),*RD S.

Table Format Specification Position Common
Index Table Parameter Block
(1 e, 1 /XDBMC/
_ 2 e, 2
) rgh1 22 repeat
Format Fixed n ot 3 IRGRPT
of length Pty group
Fixed ﬁ repeat S ent, 0 header IRGCNT
Length group
Header < 6 rey -3
7 re, 2
repeat
8 rety 2311 group IRGRTN
. L9 rtn, 3 trailer
7 (10 rgh2 22 repeat
: 11 rpt2 0 group
Format variable R
of J length < 12 cnt2 0 header
Variable \ repeat
13 re
Length group 3 +
Trailer 14 rgt 23 repea
2 group
\ _15 rtn, 10 trailer
e ,8,,Te, ,re,, and re; - all Single Element Descriptors having a value greater
than -133, less than 7, and not zero
rgh1 and rgh2 ~ Trepeat group element types with a value equal to IRGME

in /XDBMC/ common block. They indicate the beginning
of a repeat group header
rptland rpt2 - contain the integer number of times the elements bracketed
by the repeat group headers and trailer are to be repeated.
rpt,, is greater than zero indicating the repeat group has
a fixed number of repetitions, while rpt, is zero indicat-
ing an indefinite number

cnt1 and cnt2 - are zero and are used in element level processing to
control the number of times a repeat group is repeated
rgt, and rgt, - repeat group trailer element types with a value equal to

IRGTE in /XDBMC/ common block. They indicate the beginning
of repeat group traller

rtn1 and rtn2 - indices, relative to the beginning of the FST, to their
related repeat group header

Initialization: Not applicable

3.4-10

EXECUTIVE DATE BASE STRUCTURES

3.4.2.5 Record Directories (RD)

Residence: Data Members
Primary Users: Data Member Manager (DMM) get and put subprograms

Description: The Record Directory is the first level of a two level data record "
index which provide DMM with a unified approach to random and sequential accessing of
fixed format, variable format, and unformatted records. The RD is the index to the
second level, the Record Subdirectory (RS), which contains the secondary storage addresses
(relative to beginning of data member) (word addresses on CDC CYBER computer system) of

the actual data records.

The RD record has a fixed format and, within a data member, a fixed length. However,
from data member to data member the length may differ depending on the maximum number of
records (MNR) the user has allocated to a member at open time (MM@PWD, MM@PWS). This

length is calculated using the following algorithm:
LEN = (MNR);5 + 2.9999

where LEN is integer and the result is truncated.

Format:
Record Directory

id

id - RD identifier
wa, - the addresses of the secondary storage addresses of RS.

Initialization: The R record is zeroed prior to use.

3.4-11

EXECUTIVE MODULES

3.4.2.6 Record Subdirectory (RS)

Residence: Data Member
Primary Users: Data Member Manager (DMM) get and put subprograms

Description: The RS is the second level of a two level data record index which
contains the secondary storage addresses relative to the beginning of the data member

(word addresses on CDC CYBER computer system) of the actual data record.

The RS record has a fixed format and, within a data member, a fixed length.

Format:
Record Subdirectory
id
wa,
wa
¥a)ast
nxtwa
ia - table identifier
wa, - addresses of the secondary storage addresses of data records

nxtwa - chain word from current to the next RS record

Initialization: The RS record is zerced prior to use.

id = 1IDRS from /XDBMC/ common block.

3.4-12

EXECUTIVE DATA BASE STRUCTURES

3.4.3 Data Table Types

Residence: Data Tables reside on the unit specified by the user when the table is

built. While the table is open for processing, it resides in Global Dynamic Storage.

Primary Users: EM modules XTB and DBM module TMBLD1 which build Data Tables and DBM
module TMTERP which retrieves an interpolated dependent variable from a currently open

table.

Description: A data table is a user created table of data available to the function-
al modules for processing. It is a one-record member having an internmal format corre-
sponding to one of the Data Table Structures defined. Currently, only Type 1 data tables

have been implemented.

The general table structure consists of a fixed length preface of identical format
for all tables and a variable length body of specific format for the individual table
type. A Data Table is built through the control statement stream using the TABLE control

statement or in a functional module using the DBM table build routines.

When first opened for processing (TM@PN), a table is reéd into core and its name is
entered into the table directory. When closed (TMCL@S) the table remains in core and is
logically closed in the directory. Subsequent opens will take place in core via the
directory. If a table is altered while it is open in core, it should be closed with ;
close alter (TMCLSA) sc that a copy will be placed on the original member it came from.
This is necessary to preserve the integrity of the table under the following conditions:
(a) while a table is logically closed in the table directory it can be removed from the
directory for one of two reasons: (1) to make room for other tables or (2) because member
manager is processing the member for writing; and (b) when the table is removed from the

directory, a subsequent open will read a new copy of the member into core and place its

name into the table direectory.

.

3.4-13

EXECUTIVE MODULES

Format:
Position Common
Data Table Parameter Block
idtabl NDTID /XDTMC/
type NDTTP
length NDTLN
Preface rsvd
rsvd
rsvd
rsvd
Body depends on NDTST
type
idtabl - data table identifier (8HDATATABL)
type - table type (integer number)
length - length of this table (includes Preface and Body)
rsvd - reserved four words

Initialization: There is no initialization.

Life Span: A data table remains in core until: (1) it is closed and its space in the
table directory is needed to open another table, (2) it is being processed by member
manager for writing, or (3) the termination of the current ANCPP run, whichever comes

first.
3.4.3.1 Data Table Type 1

Description: For a full description of Data Tables Residence, Primary Users, Life
Span, Initialization, see Section 3.4.3. A Type 1 table defines a Data Table body format
which specifies interpolation procedures acceptable on this table and the interpolation
procedures to be used when an interpolation request is outside the table range of the

independent variable.

3.4-14

Format:

Preface

Body

nind
idscrp

nint

R int

EXECUTIVE DATE BASE STRUCTURES

Data Table Type 1

(See data table
type preface)

nind

idsecrp -

nint

number of independent variables in this table .LE.3

array of dimens
idscrp(u*i-3) -

idscrp(u*i-2) -
idserp(u*i-1) -

idscrp(u#i) -

jon nind*y

format code of ith independent variable

0 - ordered position from 1 to number of

elements in independent variable array.
In this case a, does not exist.

1 - integer (I)

2 - real single (RS)

3 - real double (RD)
integer number of ith independent variables
exrapolation procedure to be used if the ith
independent variable value supplied is greater
than largest value of the ith independent
variable in the table

0 - extrapolation not allowed

1 - use closest independent variable value

2 - extrapolate

exrapolation procedures to be used if the value
supplied is less than the smallest value of the
ith independent variable

0 - extrapolation not allowed

1 - use closest independent variable value

2 - extrapolate

number of elements in array containing interpolation procedures
acceptable on this table

array containing one or more integer codes of interpolation
procedures acceptable on this table. Acceptable codes are:

0 - no interpolation

1 - linear interpolation

3.4-15

itypdv

832 82 34

adv

« EXECUTIVE MODULES

format code of dependent variable

1 - integer (I)

2 - real single (RS)

3 - real double (RD)

one-dimensional arrays of values for the first, second, and third
independent variables, if they exist. Values must be arranged

in monotonically increasing or decreasing order

nind-dimensional array of dependent variable values such that

the first independent variable varies first, the second variable
second, and the third, third.

3.4-16

EXECUTIVE DATA BASE STRUCTURES

Format:
Sequential Library File Structure
LDR
EOP
LUH
LDM
Data Data Record
Member
Sequential
Format .
Data Data Record
Unit EOS
Sequential LDM
Format .
EOS
\ EQP
LUH
EQP
EQF
LDR - see Subsection 3.4.4.2
LUH - see Subsection 3.4.4.3
LDM - see Subsection 3.4.4.u4
E0OS - CYBER Record Manager End-of-section
EQP - CYBER Record Manager End-of-partition
EQF - CYBER Record Manager End-of-file

Life Span: During an ANOPP run an SLF is available for use following its creation by
UNL@AD or, if it was existent before the run, at any time via L@AD. A SLF may be made
unavailable within ANOPP through use of the DR@P control statement. This, however, will
also remove the file from the ANOPP run's operating environment and it cannot be reestab-

lished within ANOPP.

Initialization: See Subsections 3.4.4.2 through 3.4.4.4,

Cniﬂglhlél; fy&an IS

YR QUALITY
3.4-17

EXECUTIVE MODULES

3.4.4 Sequential Library
3.4.4,1 Sequential Library File Structure (SLF)

Residence: ANOPP library files reside on secondary storage devices (rotating mass
storage or magnetic tape) and are identified by a file name known to both ANOPP DBM and

the host computer operating system.
Primary Users: L@AD (XLD) and UNLGAD (XUN) control statements.

Description: A Sequential Library File is a set of data units, and a complete or
partial subset of their data members, which has been converted from random to sequential
access file structure. Data units and members within units are unloaded to the SLF, by
name, in ascending binary sequence to permit optimization of data unit and member loading.
Once created, individual data units or members on a SLF cannot be modified in place with-

out destroying the entire set of units.

On CDC CYBER computer systems the SLF will be recorded using Cyber Record Manager
internal blocking (BT=I) and data records will be preceded by a control word (RT=W). This
will provide: (1) efficient data transfer to all types of secondary storage devices, (2)
maximum data recoverability if errors are encountered when loading from the SLF, and (3)

compatibility between CYBER 76 and other CYBER Series computers.

3.4-18

EXECUTIVE DATE BASE STRUCTURES

3.4.4.2 Library Directory Record (LDR)

System Table Type: 1

Residence: Sequential Library Files (SLF) and Local Dynamic core storage; the IDX is

IDXLDR in /XSLF/ common block.
Primary Users: UNL@AD (XUN) and L@AD (XLD) control statements

Description: The LDR is a type 1 system table created by XUN which contains a sorted
1ist of the names of all data members (with their respective data unit names) that were
unloaded to the SLF. The LDR is written as the first record on a SLF by XUN and is sub-
sequently used to control the sequence in which data units and members are unloaded. XLD
uses the LDR to insure the existence of data members named on a L@AD control statement

prior to processing.

Format:
Position Common
Library Directory Record Parameter Block
id
Preface nae (See system table type 1
nce Preface)
le
1 Entry, entry
data
Entryi s dun LDRDUN /XSLEF/
Body \ { dmn
Entrynae . entry
L data
dun - data unit name
dmn - data member name
paGihk TR
aF POOR QUALS:

3.4-19

EXECUTIVE MODULES

Life Span: Since the LDR is recorded on a sequential library file, its life span
outside ANOPP is dependent upon retention of the SLF by the user. Within ANOPP a par-
ticular LDR is resident during XUN and XLD processing and is available from sequential

libraries.

Initialization: XUNBGN allocates the LDR at the beginning of UNL@AD control state-

ment processing as follows:
1. The number of words initially allocated to the LDR is determined by:

LEN = NTSTRT + NAELDR * LENDRE, where
NTSTRT is a variable from /XCVT/ common block, and NAELDR and LENDRE are from

/XSLF/ common block.

2. The LDR preface is initialized with the following:

id = IDLDR from /XSLF/ common block
nae = NAELDR from /XSLF/ common block
nce = set to zero

le = LENDRE from /XSLF/ common block

3. The body of the LDR is initially set to zero.
3.4.4.3 Library Data Unit Header (LUH)

Residence: Sequential Library Files (SLF)
Primary Users: L@AD (XLD) and UNL@AD (XUN) control statements

Description: The LUH is a subset of information from the Data Unit Header that is
necessary to identify and restore the original data unit when it is loaded. It is gene-
rated by UNLPAD and indicates the start of a new data unit on sequential library files.

The LUH has a fixed record length specified by LENLUH in the /XSLF/ common block.

3.4-20

EXECUTIVE DATA BASE STRUCTURES

Format:
Position Common
Library Data Unit Header Parameter Block

id LUHID /XSLEF/
dun LUHDUN
arflg LUHAT
ndm LUHNDM

id - LUH Record identifier (Hollerith)

dun - Data Unit Name

arflg - Archived Data Unit Flag

ndm - Number of data members unloaded from the named data unit

Life Span: The life span of the LUH depends on the retention period for the se-

quential library file on which it resides.

Initialization:
id = IDLUH from the /XSLF/ common block
dun = initialized with the Data Unit Name variable from the related DUD entry
arflg = initialized with the Archive Flag variable from the related DUD entry
ndm = initialized with the number of members to be unloaded from the specified

data unit
a.4.4.4 Library Data Member Structure (LDM)

Residence: ANOPP Library Files
Primary Users: LPAD and UNL@AD control statements

Description: The LDM is a copy of a data member on an ANOPP data unit. It contains

all of the information contained on the data member including the Data Member Header,

Record Directory and Subdirectories.

3.4-21

EXECUTIVE MODULES

Format:

Library Data Member Structure

DMH
RS

User

data

record
1 thrun

.
.

RS

User
data
records

n thru last

DMH - the Data Member Header is variable length and contains the Record
Directory (RD) which indexes the RS.

RS - Record Subdirectories are variable length with their number and
length dependent on the maximum number of records specified by the
user when the member was created.

Life Span: The life span of a particular LDM is dependent upcn the retention period

for the file on which it resides.

Initialization: Not applicable

3.4-22

EXECUTIVE DATE BASE STRUCTURES

3.4.5 Executive Management System Reserved Units

The Executive Scratch unit and Data unit are created by XBSDBM which initializes the

Data Base Management System. They exist throughout ANOPP execution.
3.4,5.1 Executive Management System Scratch Unit

Residence: The Executive scratch unit resides on a random access secondary storage

device and is identified by the name NXUNIT from /XCS/ common block.

Primary Users: The Executive Scratch Unit is used by XRT (The Primary Edit Phase),

XCA (The Secondary Edit Phase), XCSP (The Control Statement Processing Phase), and UPDATE.

Description: The Executive Scratch Unit is a set of Mxxx and Uxxx data members
(described in the following sections). It contains a Data Unit ‘Header (DUH) and a Data
Member Directory (DMD) which contain the information necessary to access and add members.

The format of a data unit in general are described in Section 3.4.1.1.
3.4.5.1.1 Mxxx Member

Residence: The Mxxx Member resides on the Executive Management System (EM) scratch

unit XSUNIT.

Primary Users: EM modules XRT and XCA which construct Mxxx Members and EM modules

XCSP and XMERR which use Mxxx members for processing.

Description: xxx is a display code of integers 001 through 999. M001, the root
member, is built from the control statement images in the Primary Input Stream. MO0l is
created during the Primary Edit Phase by XRT and contains the Primary Control Statement

Set in executable form.

Mxxx, xxx.GT.001, is created during the Secondary Edit Phase in XCSP when a CALL CS
is encountered and contains a Secondary Control Statement Set in executable form. The
number xxx is assigned sequentially from 002 as each CALL CS is encountered for the first

time.

3.4-23

EXECUTIVE MODULES

An Mxxx Member is made up of N unformatted, variable length records. The first N-1
records are Mxxx Control Statement Records (CS Records), one CS Record for each CS image

encountered in the input stream, and the last record is the Mxxx Label Record.

A CS Record is the executable form of one complete CS image supplied by the user in
the Primary or Secondary Input Stream. The CS records are sequenced in the order corre-

sponding to the occurrence of the CS in the Primary Input Stream.

The Label Record contains an entry for each labelled control statement in the CS
stream and specifies all label names and their corresponding CS record location. The
Label Record is variable length depending on the number of label entries. However, the

presence of the Preface always insures a Label Record length of .GE.1.

Format:
Mxxx Member
Record1 first CS Record
RecordN_1 last CS Record
RecordN Label Record

where N is the number of records on Mxxx

3.4-24

EXECUTIVE DATA BASE STRUCTURES

Format:

Control Statement Record Position
Parameter
- len KLCS
lab KCSLAB
nam KCSN
nimg KNIMG
Preface nodb KN@DB
stodb K@DB
mem KMEM
stimg KIMG
g endimg
entry
QDBl s data
Body g .
@DR, { type
i
value
@DB entry
(nodb 4 data

3.4-25

Common

Block

/Xcs/

EXECUTIVE MODULES

Preface - includes word zero through the last word of the CS image. The
length of the preface varies with the number of words required
for the CS image. The maximum preface length is 7+ (maximum
cards allowed per CS)* (numbep of words per card image) which
is (7 + 5 % 10) op 57,

len - number of words in this record

lab - name of CS label (A8) if this CS had a label; otherwise blank
nam - CS name (A8)

nimg - number of words in the CS image

nodb - number of Operand Description Blocks (gDB) in the CS record
stodb - start of the ODB entries relative to the start of the CS Record.
mem - Contains one of the following entries depending on the CS name:

1. if this is a CALL CS - name of the Mxxx Member (A8) which

2. if this is an UPDATE CS or TABLE C§ with a source = # - name
of the Uxxx Member (A8) which contains the card image input
3. if not 1 or 2, then blanks

stimg ~ CS image in A8 format. Length of the CS IMAGE is (number of cards
in this CS) * (number of words per card image)

ending - end of CS image

Bedy - the body is made up of Operand Description Block (ODB) entries.

Each field or delimiter (other than comma or blank) following the
CS name on the CS card image(s) has an ODB entry in the order
encountered on the CS card image

ODBi - Operand Description Block entry - variable length entry for each

‘ field encountered in the CS. The first word contains the type

of the field and the following word(s) contain(s) the value of
the field
Type - ANOPP integer type code of field
Value - field value - length implied by type code

Format:
— » Position Common
Label Record Parameter Block
—_—ECorC —==Acrer ==UcR
Preface{ nent KNLAR /XCS/
(entry1 entry KLAB
data
% entryi name
Body nes
entry entry KLNAME
nent | ata KNCS
-
nent - word preface contains the number of entries in this record
name ~ label name (A8)
nes - number record within the Mxxx member of the CS with this label

within the Mxxx member.

3.4-26

EXECUTIVE DATE BASE STRUCTURES

Life Span: The Mxxx Members, built during the Primary or Secondary Edit Phase of

ANOPP, exist during ANOPP execution.

Initialization: There is no initialization. Once the Mxxx Member is created, it is

not altered.
3.4.5.1.,2 Uxxx Member

Residence: The Uxxx Member resides on the Executive Management Scratch Unit XSUNIT.

Primarx Users: EM module XRT which constructs the Uxxx Member and EM module XCSP

which uses the Uxxx member for processing. The TABLE and UPDATE control statements.

ﬁescriEtion: The Uxxx Member is created during the Primary Edit Phase by XRT when-
ever an UPDATE or TABLE control statement with a source = * field is encountered in the
Primary Input Stream and contains the UPDATE or TABLE input whiéh immediately follows the
corresponding control statement in the Primary Input Stream. This input, in card image
format (10AB), is to be used as source input during execution of the corresponding UPDATE

or TABLE control statements,

xxx is a display code of integers 001 through 999. The number xxx is assigned
sequentially from 00l as each TABLE or UPDATE control statement is encountered during the

Primary Edit Phase.

Format: Uxxx Member
Recordl card image
RecordN card image

where N is the number of input card images on the Uxxx Member.

Initialization: There is no initialization. Once the Uxxy Member is created, it is

not altered.

3.4-27

EXECUTIVE MODULES
3.4.5.2 Data Unit

Residence: The DATA unit resides on a random access secondary storage device and is

identified by the name NDATA from /XCS/ common block.

Primary Users: XRT (the Primary Edit Phase) builds the members on DATA and DBM

modules access members built on DATA.

Description: DATA contains Data Unit Header (DUH) and a Data Member Directory (DMD)
which contain information necessary to access and add data members. The DUH and DMD are
followed by the data members which are built during the Primary Edit Phase (XRT) whenever
a DATA control statement is encountered. The members are built in card image format from
the card images which follow the DATA control statement in the input stream until an END*®
control statement is encountered. The format of data unit in general is described in

Section 3.4.1.1.

Format:
DATA Unit
DUH
DMD
members
DUH - data unit header
DMD - - data member directory
members - card image format

Life Span: DATA unit exists throughout ANOPP execution.

Initialization: When initially created by XBSDBM, DATA contains only the DUWK and

DMD. Their initial settings established by XCTDU are described in Sections 3.4.1.2 and

3.4.1.3, respectively.

3.4-~28

EXECUTIVE MODULES

3.5 EXECUTIVE MANAGEMENT SYSTEM

3.5.1 Overview

The Executive Management System (EM) controls the execution of ANOPP from beginning

to end.

1.

7.

8.

The following tasks are required to accomplish this control:

Perform initialization requirements for the Executive Management System

(EM), the Data Base Management System (DBM), the Dynamic Storage Management
System (DSM), and the General Utilities.

Validate the required user supplied set of control statements which defines

the execution sequence.

Direct the order of execution dymamically via the required set and the optional
set(s) of control statements supplied by the user.

Control the execution of Functional Modules (F.M.) by transferring execution
control to the specified F.M. and by insuring the integrity of the ANOPP system
environment upon completion of the F.M.

Direct the action to be taken upon encountering a non-fatal error during
execution of ANOPP.

Validate the optional set(s) of control statements which define secondary
execution sequence(s) to be performed.

Terminate ANOPP when all required tasks have been accomplished.

Abort ANOPP if a fatal error occurs during the performance of the above tasks.

ANOPP is controlled by a set of control statements called the Primary Input Stream.

The Primary Input Stream consists of an optional initialization control statement and a

required execution section which defines the execution sequence. The ANOFPP control

statement allows the user to define selected ANOPP initialization parameters. The exe-

cution section begins with a STARTCS control statement followed by the contrel statements

defining the execution sequence and ends with an ENDCS control statement.

Additional control statement sets may define secondary execution sequences to be

dynamically executed via a CALL control statement. The additional control statement

3.5-1

EXECUTIVE MODULES

set is called a Secondary Input Stream and resides as a data member in card image format.
The Secondary Input Stream may be prepared prior to the current ANOPP execution or it may
be created within the execution sequence prior to the corresponding CALL control state-

ment.

Executive Monitor (XM) is the driver module for the Executive Management System. XM

is also the main FORTRAN program for ANOPP and remains in core at all times.

The Executive Management System is composed of eight execution phases which are
controlled directly or indirectly by the XM driver module. The following execution phases

correspend to the eight Executive Management System tasks previously stated:

1. Initialization Phase

2. Primary Edit Phase

3. Control Statement Processing Phase
4, Functional Module Processing Phase
5. Error Processing Phase

6. Secondary Edit Phase

7. Normal Termination Phase

8. Error Termination Phase

3.5.2 Control Statements

A control statement is one or more cards or card images which defines a particular
action.to be performed by the ANOPP Executive Management System. A set of control state-
ments is one or more statements which are ordered sequentially to define an execution
sequence. et is executed sequentially from the first control statement through the
last control statement in the set. The sequential flow may be altered, however, by
special control statements which transfer execution control to a specified control state-
ment in the same set or the beginning of another set. There are two types of control

Statement sets, the Primary Input Stream and the Secondary Input Stream.

3.5-2

EXECUTIVE MANAGEMENT SYSTEM
3.5.2.1 Primary Input Stream

The Primary Input Stream is a required set of input cards. It consists of an op-
tional initialization control statement (CS),‘the ANPPP CS, and a required execution
section. The AN@PP CS allows the user to define initialization values for selected
executive module parameters. If present, it must be the first CS in the Primary Input
Stream. If omitted, all parameters are initialized according to predefined installation
values. The execution section begins with a STARTCS control statement followed by control
statements defining the execution sequence and ends with an ENDCS control statement. If

the ANOPP CS is not present, STARICS is the first card in the Primary Input Stream.
3.5.2.2 Secondary Input Stream

A Secondary Input Stream is an optional set of card images(which resides as a data
member in card image (CI) format. A CALL in the Primary Input Stream brings into exe-
cution a Secondary Input Stream which may also contain a CALL. There is no limit to the
number of nested CALL control statements. There is no requiped first or last control
statement (CS) in a Secondary Input Stream. The execution sequence begins with the first
€S and ends with the last CS. However all control statements or control statement forms
defined for ANOPP are not available for usage in a Secondary Input Stream. The invalid
control statements are generally those which require card input to immediately follow the
CS. An example is the DATA control statement (see Section 3.5.2.4.7). All control state-
ments of this type require the END* card (see Section 3.5.2.4.11) to terminate the input
and are valid in the Primary Input Stfeam only. The ANOPP, STARTCS and ENDCS control
statements are alsc invalid in the Secondary Input Stream. The validity of each CS with

respect to usage is given in the specific CS description section (see Section 3.5.2.4).

EXECUTIVE MODULES

3.5.2.3 General Description
3.5.2.3.1 Format

The general format of a control statement (CS) is shown below:

labeldcsnamedop $ comments

where:

label - an optional 1-8 character alphanumberic name tag which will be
associated with this directive. A label is allowed on any control
statement except AN@PP, STARTCS, END*, and RETURN.

d - a comma or a blank

csname - a valid 1-8 character alphanumeric control statement name

op - operand field(s) as appropriate to particular control statement

$ - the end-of-data character which indicates completlon of a CS.

The remainder of the card may be comment.

3.5.2.3.2 Valid Control Statement Names

Valid control statement names recognized by the ANOPP system are shown below:

AN@PP DATA GOT@ RETURN
ARCHIVE DETACH Ir SETSYS
ATTACH DR@P L@AD STARTCS
CALL ENDCS PARAM TABLE
C@NTINUE END#* PR@CEED UNL@AD
CREATE EXECUTE PURGE UPDATE

3.5.2.3.3 Free-Field Form

A CS directive is free-field form on a card image in columns 1-80. The fields
(including label and CS name) may begin in any column. Blanks or commas may be used

freely between fields for spacing and are ignored.
3.5.2.3.4 Comments

A comment may follow the end-of-data character ($) on a card image and extend through
column 80. A comment card is a card image (other than a CS continuation card) with the
first non-blank character, other than a comma, being a $. The remainder of the card is

Processed as a comment.

3.5-U

EXECUTIVE MANAGEMENT SYSTEM
3.5.2.3.5 Continuation

A CS may require more than one card image for completion. A maximum of 5 continua-
tion cards are allowed with the end-of-data ($) character appearing on the last card image
required. A Hollerith field type may be continued to column 1 of the continuation card
image; however, the nH portion which identifies it as Hollerith must not be split between
two card images. No other field types may be split between two card images. Comments may

not be continued (except as multiple comment cards).
3.5.2.4 Specific Descriptions

On the following control statements (CS) an optional field is enclosed in [] . The
symbol & represents a blank. The alphabetic letter is slashed when appearing on a card

image (e.g., alpha @, numeric 0, alpha 3, numeric 2).

© 3.5.2.4.1 AN@PP

Purpose: The AN@PP control statement is optional and provides for user-specified
values to be used for executive system parameters during the ANOPP run instead of system
defined default values. If used, it must be the first control statement in the Primary

Input Stream immediately preceding the STARTCS control statement.

Format:

ANQPPdkeywordl=valuel[d...dkeywordn=valuen] $

keyword - the name of the parameter whose default value the user wishes to override
or replace. A list of valid keywords with their corresponding acceptable
replacement values and system default values is given in the ANOPP Keyword
Table (see Table 1).

value - the value which is to replace the system default value for the corre-
sponding keyword. A label field is not allowed on the AN@PP statement.

Examples:

AN@PP JECH@=.TRUE. $
AN@PP,JL@G=.TRUE. JECHP =.TRUE. $
AN@PP NLPPM = 40,LENGL=30000,JL@#G = .FALSE.$

Restriction: ANOPP is valid only as the first CS in the Primary Input Stream.

‘ . 3.5-5

KEYWORD

EXECUTIVE MODULES

RANGE OF
DESCRIPTION ACCEPTABLE VALUES

DEFAULT PARAMETERS

Residence

Name

Value

JECH@

JL@G

LENGL

NAETD

NAEUD

NLPPM

N@G@

Print card images from .TRUE.
the primary input stream .FALSE.
or from a member (via a
CA11 CS) as they are
validated in Primary Edit
Phase and Secondardy
Edit Phase
JECH® = .TRUE. then print
card images

JECH@ = .FALSE. then do
not print card
images

Print card images of .TRUE.
control statements as .FALSE.
executed in the Control
Statement Processing
Phase
JL@G = .TRUE. then print
card images
JL@G = .FALSE. then do
not print card
images

Length of global dynamic Integer
storage initialized for
this ANOPP run

Number of initially Integer 2 2
allocated entries in the
Table Directory

10

Number of initially Integer > Y
allocated entries in the
United Directory

Number of lines per
printed pages to be
used for all ANOPP

printed output

PRIMARY EDIT ONLY .TRUE.
NOGP = .TRUE. then .FALSE.
terminate ANOPP after

Primary Edit Phase

N@G@= .FALSE. then do

not terminate ANOPP after

Primary Edit Phase

>
> 300010

Integer 1510<:NLPPM

/XSPT/

/XSPT/

/XCVT/

/XDTMC/

/XDBMC/

/XCSFM/

/Xcs/

Table 1. ANOPP Control Statement Keyword Table.

3.5-6

JECH@

JLOG

LENGL

NAETD

NAEUD

NLPPM

NOGP

.FALSE.

. TRUE.

20,000

1010

2510

k810

.FALSE.

EXECUTIVE MANAGEMENT SYSTEM

3.5.2.4.2 ARCHIVE

Purpose: The ARCHIVE control statement permanently prohibits any request to write on

the named unit or units.

Format:
[labeld]ARCHIVEddul ...ddun] $
label - label name
du - name of the data unit to be archived

The specified unit(s) are permanently archived and no future writes to the unit(s)
are permitted. The archive indicator is written to the unit thus prohibiting output to

the unit(s) even in subsequent ANOPP runs.

Examgles:

LAB,ARCHIVE Ul, U2 Ulo, U50 $
ARCHIVE,US0 $

3.5.2.4.3 ATTACH

Purpose: The ATTACH control statement attaches data units to the internal system
which were previously created on direct access files and are presently assigned in the

external system.

Format:

[1abe1d]ATTACHddul[/efnl/)[..,dun[/efnnZ]] 5
label - label name
du - name of data unit to be attached

efn - name of the external file associated with du

An entry is made in the Unit Directory for each data unit named (du) and the external

file name specified (efn) is associated with the unit.

3.5-7

EXECUTIVE MODULES

ExamEles:

ATTACH UNIT1/M0150/, UNIT2/U001/ §
ATTACH UNIT2/EFN/ §

Restriction: Data units appearing on the ATTACH CS must have appeared on a DETACH CS
in this or a previous ANOPP execution.

3.5.2.4.4 CALL

Purpose: The CALL control statement executes a set of control statements which have
been previocusly created in card image format (CI) on a data member of a data unit. Prior

to execution the CS images will be altered according to specified value replacements.

Format:
[labeld]CALdeu(dm) Loldvaluel=newvaluel,...,oldvaluen=newvaluen]$

label - label name

du - the name of the data unit containing dm

dm - the name of the data member which is composed of the set of control
statements to be executed

oldvalue - the field value which when encountered on a CS card image is to be
replaced with the corresponding "new value". The old value may be
any valid field type (I, RS, RD, L, AD, LO, N, A) recognized by the
XCR module when cracking a card image.

newvalue - the field value which will replace the "old value". The new value

may be any valid field type (I, RS, RD, L, A0, LO, N, A) described
in Section 3.9, Table 1. The type of this old value does not have
to be the same as the type of the new value; any field value may be
replaced by any other field value.

Each control statement (one or more card image records) on the member dm will be
searched for fields which match the "old value" parameters specified on the CALL CS. If
a field is found to match an "old value" then it is rep. -ced with the corresponding "new

value". The types of "old value" and '"new value'" may or may not agree.

After all replacements have been successfully accomplished, the set of control
statements are executed sequentially beginning with the first CS in the dm member. Of
course, execution flow sequence within the secondary control stream may be altered by a CS

such as G@TP, IF, or another CALL.

3.5-8

EXECUTIVE MANAGEMENT SYSTEM

Upon completion of the set of CALLed control statements, execution will continue with

the CS immediately following the CALL CS.

Examples:

LABEL CALL UN1(DM2),ANAME=BNAME,10=15 $
CALL,UN2(DM2) ,3HABC=6HABCDEF ,10=15.5 $
CALL UN3(DM3),.TRUE.=.FALSE.,+=% %=NAME $

Restrictions: du (dm) was previously created during this ANOPP run or on a previous
ANOPP run with a fixed format of CI (the normal procedure for creating du (dm) is via the

DATA or UPDATE CS).
3,5.2.4.5 C@NTINUE

Purpose: The CPNTINUE control statement allows for a no action step in execution.

It is used mainly with a G@T# to allow processing flow alteration.

Format:

[1abel) CONTINUE
label - label name
ExamEles:

LABEL1 C@NTINUE $

3.5.2.4.6 CREATE

Purpose: The CREATE control statement defines an empty data unit on a direct access

storage device for subsequent output of members.

Format:
[abel JCREATE jdu, [/efn, /] [. .. »duy [refn /178
label - label name
du - the name of the data unit to be associated with the data to be output
on efn for this ANOPP run
efn - ‘the name of a file, known to the user, which is defined in the external

system. If omitted, a scratch file name is assigned.

3.5-9

EXECUTIVE MODULES

ExamEles:
[LABEﬁLCREATE UNIT1,UNIT2/EFN2/,UN3/E3/ $
CREATE UNIT2 $

Restrictions: The du and efn cannot respectively be the same as another data unit

name or external file name currently entered in the data unit directory.

3.5.2.4.7 DATA

Purpose: The DATA control statement creates a data member on data unit DATA.

Format:
1abe1d DATAdDM=dmname $
label - label name
dmname - the name of the data member to be created on data unit DATA.

Data which is to form the data member, dmname, must immediately follow the DATA CS
directive in the Primary Input Stream. The data card images must be terminated by an END*

CS following the last card image to be used as data.

Dmname will be written on data unit DATA. Dmname will have a fixed format of 10AS8
which corresponds to a card image. FEach record on dmname Qill correspond to a single card
image read from the Primary Input Stream. Any valid FORTRAN character is acceptable on
the card image in any sequence except as follows: beginning with the first non-blank
character, the first four (4) characters on a card image must not be END* as this is
recognized as the DATA CS input terminator (i.e., a card image beginning with END#*AB is

not an acceptable data card image).

Examgles:

LABEL DATA DM = DMEM $

1 2 3 4 ... 50

1.5 2.1 6.0 .TRUE. ... 40
END® $

The data member DMEM will consist of two records of fixed format 10A8. Record 1 will

contain the card image:
1 2 3 4 «e. 50

3.5-10

EXECUTIVE MANAGEMENT SYSTEM

Record 2 will contain the card image:

1.5 2.1 6.0 .TRUE. ... &0

Restrictions: The same name must not appear on another DATA CS within the same ANOFP
run.

3.5.2.4.8 DETACH

Purpose: The DETACH control statement removes a data unit from the set of data units
known to the ANOPP run. The status of the external file associated with this data unit is

left unchanged.

Format:
[labeld] DETACH du, [.. Jdu_ E
label - 1label name
du - name of the data unit known to the ANOPP run

NOTE: Unless the data unit resides on a scratch file the external file is available for
subsequent ATTACH CS statements.

Exameles:

L1 DETACH AIRCR,AIRPRTS,WCON $
DETACH MSC $

3.5.2.4.9 DR@P

Purpose: The DR@P control statement drops a sequential library file assigned to this

job from the external system. The sequential library file is disassociated with the

current execution.

Format:
[Label JoRP,/sefn, /[... /sefn /] $
label - label name
sefn - name of the sequential library files to be dropped.
Examples:

END DRgP /TAPEl/,/TAPE2/,/FILE1l/ $
DRgP /FLE/ $

3.5-11

EXECUTIVE MODULES

Restrictions: Sequential library file names (sefn) must be unique.

3.5.2.4.10 ENDCS

Purpose: The ENDCS control statement when processed terminates the ANOPP run. There
must be only one ENDCS per run, and it must be the last control statement in the Primary

Input Stream. It is the only control statement which will terminate an ANOPP run.

Format:

[1abel d]ENDCS $
label - label name
Examples:

ENDCS $
ST@P ENDCS $

Restriction: ENDCS is valid in the Primary Input Stream only.
3.5.2.4,11 END*
Purpose: The END* control statement indicates the end of the card image input stream

required by the previous control statement, DATA, UPDATE or TABLE.

Format:

END* §

Examples: See DATA CS, UPDATE CS, and TABLE CS for specific examples.

Restriction: END* is valid in the Primary Input Stream only. A label field is
unacceptable on an END¥ CS.
3.5.2.4.12 EXECUTE

Purpose: The EXECUTE control statement defines a set of alternate names and executes
a specified functional module.

Format:

[label]BXECUTE famname [refname
d [1

=altnamel,...,refname=altnamen] $

3.5-12

EXECUTIVE MANAGEMENT SYSTEH

label - label name

fmname - the name of the functional module which is to be executed.
refname - the reference name which has a corresponding name

altname - the alternate name corresponding to the reference name

A set of reference names (refname) and corresponding alternate names (altname) is
established (both refname and altname are valid name fields). The functional module is
placed in execution immediately. During the execution, the set of alternate names is

available for retrieval by the functional module or by an executive system module (for

full explanation, see ANOPP Parameter Maintenance Functions (PMF) utilities, Member Manager

Subprogram input arguments, and Table Manager subprogram input arguments).

Exalees:

L1 EXECUTE JET Al=UAB,B=D $
EXECUTE - JET $

Restriction: EXECUTE is valid in the Primary or Secondary Input Stream. fmname must

refer to a functional module installed and recognized by the ANOPP executive system.

3.5.2.4.13 G@TP

Purpose: The G@TP control statement allows an alteration in the flow of control
statement processing. Processing will continue at the control statement containing the

label specified.

Format:

[1abe1d}G0T¢d1abnam $

labnam - the label name of the control statement at which processing should
continue
Examples:

NAME GPTP NAME2 $
GO@TY NAME $

Restriction: Labname must be in the label field of a control statement which is

within the same set of control statements as this G@T@.

cv
‘gpi}ﬁixv
(oA ALY -3,5-13

EXECUTIVE MODULES

3.5.2.4.14 IF

Purpose: The IF control statement permits an alteration in the flow of processing if
a specified condition exists. The value of a user parameter is compared with the value of
either another user parameter cr a constant. If the comparison results in a true condition
then processing continuves with the control statement having the specified label; otherwise,

processing continues with the next control statement.

Format:
paramname
logical numerical constant
doperator) logical constant
string constant

[labeld]IF paramname G¢T¢dlabnam $

label - label name

paramname - name of a user parameter whose value is to be compared with
the value following the logical operator

logical operator - a logical operator used in comparison of the two values.
Any logical operator is valid for comparing values which are
type integer, real single precision, or real double precision.
The operators .EQ. and .NE. are valid for values of types
logical and character string

paramname

numerical”constant
logical constant
string constant

-~ the second value for comparison

labnam - the label of the control statement at which processing
should continue if the comparison of the two values results
in a true condition.

ExamEles:

LABEL IF (A .GE. B) G@T® LABEL1l $
Ir (D .EQ. .TRUE.) G@T® LABELl $
IF (F .EQ. BHFVALUE) G@T@® LABEL $

Restriction: Labnam must be in the label field of a control statement which is
within the same set of control statements as this IF. The type of the second value must
agree with the value type of paramname, . If the type is character string then the number

of characters in the two strings must be equal.

3.5-14

EXECUTIVE MANAGEMENT SYSTEM
3.5.2.4.15 L@AD -

Purpose: The L@AD control statement loads data units from a sequential library file
which has been assigned to the run through the external operating system's control langu-
age. This sequential library file must have been created by an UNLAD CS by the current
or a previous ANOFP run. This CS provides selective loading and/or renaming of data units
stored in a sequential library file.

Format: ‘
[labeld]LQAD/sefn/ $

or
[labeld]L(bAD/sefn/ [dusl, . oo pdus] $ where

dus has the form:
du[[/efn/] = odu [(dl’-""dn)]]

di may have either of the forms:

dml
dmnew = dmold
label - label name
sefn - the sequential external file name of the library file from which data
units are to be read
du - the name of the data unit which is to be loaded
efn - +the external file name
odu - the name under which the data unit was unloaded. If not specified, it

is assumed to equal du

dm — ‘the name of a data member on the odu which is to be loaded from the
library. If a member list is not specified, all data members on odu du
are loaded from the library

dmnew - new name of data member
dmold - name data member was known by
ExamEles:

L@AD/TAPEL/ §
L@AD/TAPEL/UNITL/EFN1/ (MEM1,MEM2) $
L@AD/TAPE1 /UNIT2,UNIT3/EFN3/=0UNIT3 $

Restriction: du and efn must not be in the current data *mit directory. The name of
the data unit to be loaded may not be XSUNIT or DATA. If duplicate data unit names
appear on the left of the =, only one occurrence may specify the optional external file

name (/efn/).
3.5-15

EXECUTIVE MODULES

If data unit name stands alone, as in the form

LPAD/LFNLI/DUN1 $ or
LPAD/LFN1/DUN1/EFN1/ $

then the data unit name (DUN1) may not appear on the right of the = again.

There may be no duplicate data unit and data member name combinations on the right of

the = .

3.5.2.4,16 PARAM

Purpose: The PARAM control statement establishes a user parameter or changes the

value of an already existing user parameter.

Format: numerical constant
string constant
ﬁabeld]PARAMdparamnamel= logical constant oo 8
' paramname,, '
or
] * \numerical
[labeld PARAMdparamnamel=paramnameég;jzonstant .8
label - label name
paramname, - a valid ANOPP name of the user parameter for which a value is to

be established or changed

paramname a valid ANOPP name of a user parameter for which a value has already

2 been set

In the first form, paramname, , will be given the value following the equals sign. If

paramname, is specified, the current value of the user parameter paramname,, will be used.

2
In the second form an algebraic operation will be performed on two values which must

be of the same type and the result will become the value of paramname The current value

1
must be of the same type as the numeric constant. If paramname is the name

of a previously established user parameter (via a PARAM CS or an XPUTP call), its value

of paramname,

will be changed. The types of the old and new values may or may not agree.

If paramname, is not the name of a previously established user parameter, then a new

1
user parameter is established and will remain available throughout the ANOPP run. A user

parameter once established is never deleted from the set of known user parameters.

3.5-16

EXECUTIVE MANAGEMENT SYSTEM

Examgles:
PARAM A=.5,B=A+10,C=D*2 $
PARAM F=C $

3.5.2.4.,17 PR@CEED

Purpose: The PRECEED control statement allows for processing to continue at a
specified peint after an ANOPP error has occurred. It is used mainly in conjunction with
the system parameter JCPN which may be set via the SETSYS control statement. When a
control statement cannot process to its normal completion due to a non-fatal error condi-
tion, processing will continue with the first encountered PRUCEED control statement if
system parameter JCON is set to _FALSE. . The PR@CEED, when encountered for execution by

normal processing, is a mo action step.

Format:

[1abel ,JPROCEED §
label - label field

ExamEles:

ERRl PR@CEED §
PR@CEED $

Restriction: Upon encountering a non-fatal error, the control stream is searched for
a PROCEED statement. CALL statements encountered in this search are not expanded.

3.5.2.4.18 PURGE

Purpose: The PURGE control statement removes a data unit {or units) from the set of
data units known to the ANOPP Data Base Manager and also from the external operating

system.

Format:

ﬁabeld]PURGEddul[...,dun] $

label - label name
du - name of the data unit to be purged

3.5-17

EXECUTIVE MODULES

Examgles:

APP PURGE UN1,UN2,UN4,UN5 $
PURGE UN6 $

3.5.2.4.19 RETURN
Purpose: The RETURN control statement indicates processing of a Secondary Input

Stream is complete and allows return to the calling Primary or Secondary Input Stream.

Format:

RETURN $

RETURN is created internally during the Secondary Edit Phase (see Section 3.5.4.8) to
indicate completion of the Secondary Input Stream. Upon processing a RETURN, execution
will continue with the control statement following the CALL which initiated the execution

of the Secondary Input Stream.
Examples: Not applicable

Restriction: RETURN is not allowed in the primary or secondary input stream provided

by the user. It is simulated during the secondary edit phase for internal centrol only.
3.5.2.4,20 SETSYS

Purpose: The SETSYS control statement sets the value of a user system parameter.

Format:
[labeld]SETSYSdsysparaml=valuel[,...,sysparamn=valuen] $
label -~ label name
sysparam - the name of a user system parameter for which a value is to be set.
A list is found in Table 2. SETSYS System Parameters Table.
value - the value to which the corresponding user system parameter is to be

set, The type of value must be valid and within range for the
corresponding user system parameter

A user system parameter may be set several times during the ANOPP run via a SETSYS
CS. All user system parameters have initial value settings determined during the ANOPP

Initialization Phase. The initial value is the default value defined by the ANOPP system

3.5-18

SYSTEM
PARAMETER
NAME

JCON

JECH@

JL@G

ORI AY
OF Pank

EXECUTIVE MANAGEMENT SYSTEM

DESCRIPTION TYPE/RANGE
Controls Executive Managers action when Logical
an error has been detected in processing .TRUE.
an ANOPP control statement. JC@N = .TRUE. .FALSE.
indicates execution will continue with the

next CS.

JCPN = ,FALSE. indicates execution will
continue with the next PR@CEED CS. If a
PR@CEED is not encountered then the ENDCS

CS will be executed for a normal termination.

Controls printing of the CS card images Logical
upon validation in the Primary and Secondary .TRUE.
Edit Phases. All of the Control Statements .FALSE.

in the Primary input stream are edited for
errors before execution of the first CS
(Primary Edit Phase). All of the control
statements in a data member which is called
into execution via the CALL CS are edited
for errors before execution of the first CS
(Secondary Edit Phase).

JECH® = .TRUE. indicates the CS images
are to be printed

JECH@ = .FALSE. indicates the CS images
are not to be printed

Controls printing of the CS card images Logical
upon execution in the AN@PP Control .TRUE.
Statement Processing Phase. .FALSE.

JL@G = .TRUE. indicates the CS images
are to be printed
JECH@ = .FALSE. indicates the CS images
are not to be printed

Rt Table 2. SETSYS System Parameters

3.5-19

DEFAULT

VALUE

.FALSE.

.FALSE.

.TRUE.

EXECUTIVE MODULES

independent of user control. However, the default value of several system parameters may

be set by the user during the Initialization Phase by the ANOPP CS.

Examples:

SETSYS JECH@=.TRUE. $
ABC SETSYS JC@N=.TRUE.,JL@G=.TRUE. $

3.5.2.4.21 STARTCS

Purpose: The STARTCS control statement indicates the beginning of control statements
in the Primary Input Stream. It is required for each ANOPP run. It immediately follows
the ANOPP control statement, if present; otherwise, it must be the first card in the ANOPP

Primary Iuput Stream.

Format:
STARTCS $

Examgles:
STARTCS $

Restrictions: STARTCS is valid in the Primary Input Stream only. A label field is

not allowed on the STARTCS.

3.5.2.4.22 TABLE

Purpose: The TABLE control statement builds a data table on a specified member, or

subsequent use by Table Manager, from table description input cards.

Format:

[labeld]TABLEddu(dm)dtypedSOURCE=srce $

label - label name

du(dm) - specifies the name of the unit and member on which the table is to be
built

type - specifies the type of table to be built. A present type must be 1

(see Section 3.u4.3.1 for description of Table Type 1)

srce - specifies the location of the table description card images
may assume one of two forms:
% card images follow in input stream;
du(dm) card images reside on the specified unit member in card image
(c1) format

3.5-20

EXECUTIVE MANAGEMENT SYSTEM

The table type 1 table description cards are of the following format:

INT = Cl,...
IND = FC,NV,EXU,EXL,VALL,VAL2,...
DEP" = FC,VAL1,VAL2,...
where:
INT card - contains the integer codes for the interpolation procedures permitted
on this table.
C1 - Integer code
0 - no interpolation permitted
1 - linear interpolation
INDn card - contains the description of the nth independent variable where 1%n=3,
FC - (format code) the alpha data type code of the nth independent
variable.
0 - ordered position from 1 to NV; independent variable values
not entered
I - integer
RS - real single precision
RD - real double precision _
NV - number of values for the nth independent variable
EXU - integer code for the extrapolation procedure to be used (by
interpolation routines) if the independent variable is greater
than the largest independent variable '
0 - no extrapolation allowed
1 - use the independent value closest to the specified value
2 - extrapeclation is linear using the last two independent
values
EXL - integer code for the extrapolation procedures to be used if
the independent variable is less than the smallest independent
variable. See EXU for code value
VALL - NV values for the nth independent variable in ascending or
descending order. Values are separated by blank or comma and
may extend over several card images. If FC=0, values are not
included.
DEP card - contains the description and values of the dependent variable and must
follow the INDN cards.
FC - (format code) alpha data type of dependent variable
I - integer
RS - real single precision
RD - real double precision
VALl - values for the dependent variable separated by commas or blanks.
May extend over several card images. The order of dependent
variables is such that the first independent variable varies
first, the second variable varies second, and the third variable
varies third.
END* card - required if source = %.

3.5-21

EXECUTIVE MODULES

ExamEles:

LAB TABLE UNI(DMS),,S@URCE=% $
INT = 0,1

IND2 = 1,2,0,1,5,10

INDL = RS,3,0,1,1.5,2.0,4.5

DEP = 1,3,5,7,8,9

END* $

TABLE UN2(DM1),1,SPURCE=UN5 (DM2) $

Restriction: TABLE with SPURCE=%* is valid in the Primary Iuput Stream only. TABLE

with SPURCE=DU(DM) is valid in the Primary or Secondary Iuput Stream.

3.5.2.4.23 UNLPAD

Purpose: The UNLPAD control statement unloads data units, known to the present ANOPP
run, to a sequential library file which has been defined and assigned to the run through
y g g

the operating system control language.

Format:

[labeld]UNLQ)AD/sefn/ [dusl, e .dusn] $

where dus is of the following form:

du[(dml,. . .dmn)]

label -~ label name

sefn - the sequential file name of the library file to which data units are to
be unloaded

du -~ .the name of the data unit to be unloaded

dm - the name of the data member to be unloaded. If a data member is not

specified, all of the data members on the data unit are unloaded

If a data unit list is not specified, all data units presently defined in the Unit
Directory except XSUNIT and DATA will be unloaded to sefn. The Unit Directory consists of
all units &hich have been L@ADed, ATTACHed, or CREATed, and have not been DETACHed or
PURGed since the beginning of the ANOPP run.

Examples:

UNL@AD/TAPEY/ $

UNL@AD/TAPE1/UNIT1,UNIT2(MEM1) $

Restrictions: There may be no ‘duplicate data unit and data member name combinations.

3.5-22

3,5.2.4,24 UPDATE

EXECUTIVE MANAGEMENT SYSTEM

Purpose: The UPDATE control statement provides a means of building a data unit by

using an existing data unit as a basis for modifications or by adding members from various

sources with no one data unit as a basis or a combination of both. There are two UPDATE

modes, revise and create, depending on the presence of a data unit as a basis for revi-

sion. For more detailed information concerning UPDATE, see Section 3.8.

Format:

& $
[1aber d)UPDATE gleLou=au, 4] YEWU=du, 4 [AI,Ld]SQSURCE:{ du, dms)}LLISTm[x...]]

label -

dul -

du -

ALL -

SOURCE clause

LIST clause -

label name

the name of the data unit to be used as the basis for UPDATE pro-
cessing. The presence of the OLDU clause indicates a revise mode
UPDATE. Member level and record level directives which allow a
default of OLDU data unit or imply the OLDU .data unit, will use du.,,
as the required unit. The omission of the OLDU clause indicates a
create mode UPDATE.

the name of the new data unit to be built during UPDATE processing.

this keyword indicates a full update of the basis data unit (OLDU) is
to be performed. All data members on the OLDU data unit which are not
processed by a member level directive will be copied to the NEWU data
unit.

- the SOURCE clause specifies where the set of UPDATE input directives
will be found.

indicates the directives follow immediately in the Primary Input
Stream with the set of UPDATE directives terminated by an END* CS.
du.(dm.) indicates the directives are found on the data unit and data
mefiber” specified

specifies the type of printed output required from the UPDATE process-
ing. The list following the = is a sequence of letters specifying
the sections of output desired. The 1ist may be any combination of
the following:

E - Directive Echo Section

S - Summary Section

C - CHANGE Members Section

A - ADDR Members Section

3.5-23

EXECUTIVE MODULES

Examples:
LAB1 UPDATE NEWU=Ul,S@URCE=%,LIST=S $
(directive set)
END* $
UPDATE @LDU=U001,NEWU=U002,ALL, SPURCE=DUS(M1),LIST=SEA $
UPDATE @LDU U002,NEWU ABC,S@URCE=* $
(directive set)
END*® $
UPDATE ALL,#LD=UN1,NEW=UN2,S@URCE=%,LIST=A $

(update directives)

END*
UPDATE NEW=UN3,S@PURCE=UN4(MEM1) $

Restrictions: See UPDATE Description (Section 3.8).

3.5-24

EXECUTIVE MANAGEMENT SYSTEM

3.5.3 Executive Monitor (XM)

Purpose: The Executive Monitor (XM) module is the single driver for the Executive
Management System. XM is also the main FORTRAN program for ANOPP and remains in core at
all times. It is in ultimate control of ANOPP from beginning to end and thus directs the
execution of other Executive Management System modules to accomplish the tasks required.
XM calls into execution five of the Executive Management System execution phases. These
phases are the Initialization Phase, the Primary Edit Phase, the Control Statement Pro-
cessing Phase, the Functional Module Processing Phase, and the Error Processing Phase.
The remaining execution phases are called into execution as required during these phases

by lower level modules.

Input: Since XM is a driver module to direct execution of various execution phases,

there is no direct input,

Output: Since XM is a driver module there is no output. All output from ANOFPP is

accomplished within the various execution phases.

Functional Description: The functions of XM are as follows:

3

1. To perform initialization requirements for the Executive Management System, the
Data Base Management System, the Dynamic Storage Management System, and the
General Utilities (Initialization Phase).

2. To validate the ANOPP execution sequence defined by the Primary Input Stream
(Primary Edit Phase).

3. To execute or process the execution sequence to completion (Control Statement
Processing Phase).

4, To execute or process Functional Modules (Functional Module Processing Phase).
5. To direct the action to be taken upon encountering a non-fatal error during

execution of the Control Statement or Functional Module Processing Phase (Error
Processing Phase).

Logical Description: XM calls into execution the Initialization Phase, and the

Primary Edit Phase and then iterates between the Control Statement Processing Phase and

either the Functional Module Processing Phase or the Error Pro.essing Phase.

At the beginning of ANOPP the driver XM is brought into execution and XM immediately

calls XLINK requesting that the module XBS be executed. XBS controls the Initialization

by
-~

i .;\ i ' : o 3.5-25
0F v |

EXECUTIVE MODULES

Phase. Initialization requirements for all executive modules are performed according to
parameter values specified on the optional ANOPP CS in the Primary Input Stream or default

values provided by the ANOPP installation settings.

Upen completion of XBS, XM calls XLINK requesting that XRT be executed. The module
XRT controls the Primary Edit Phase. The control statements in the Primary Input Stream
following the STARTCS are read, validated, reformatted into an executable form, and
written as data member MOOl. This member resides on the data unit XSUNIT which is re-
served for Executive Management System usage. The reformatted control statements residing
on MOOLl are called the Primary CS Set. XRT does not return to XM if during the Initializa-
tion Phase or the Primary Edit Phase an error has occurred; XRT will call the Error

Termination Phase to abort ANOPP.

Upon completion of the Primary Edit Phase, XM calls XCSP via XLINK. The XCSP module
controls the Control Statement (CS) Processing Phase. The Primary CS Set is executed or
processed sequentially allowing for flow alteration by certain control statements. A
Secondary Input Stream may be called into execution via a CALL CS. Upon the first execu-
tion of a particular CALL, the Secondary Input Stream is read, validated, reformatted, and
written in executable form as an Mxxx type data member residing on the XSUNIT data unit.
The name Mxxx, where xxx is an integer sequentially assigned as required, is assigned to
the data member. This data member is called a Secondary CS Set. XCSP continues to ’
execute the Primary and Secondary CS Sets to completion unless a non-fatal error is de-

tected or execution of a Functional Module is requested via an EXECUTE CS. 1In either

case, control is returned to XM for action.

Upon return from XCSP, XM determines the reason for interruption of the CS Processing
Phase. The ANOPP error indicator, variable NERR residing in /XCVT/, is interrogated and
if errors occurred, the module XMERR is called via XLINK to perform the Error Processing
Phase. If errors occurred then the XFM module is called directly by XM to perform the

Functional Module (F.M.) Processing Phase.

During the Error Processing Phase, depending on the system parameter JC@N, XMERR will
provide the environment for the next entry to XCSP to either continue processing with the

3.5-26

EXECUTIVE MANAGEMENT SYSTEM

next CS or to continue processing with the first PRECEED CS found in a sequential scan
fopward from the CS which encountered the error. No control statements are executed
during the scan. In particular, a call statement is neither expanded nor processed. If
no PRPCEED is found in the search, XMERR provides the environment to continue processing
with the ENDCS in the Primary CS Set; this will subsequently invoke the Normal Termination

Phase upon the next entry to XCSP.

Upon return to XM from XMERR, the module XCSP is called to proceed with the CS

Processing Phase.

During the Functional Mecdule Processing Phase, XFM brings into execution the re-
quested Functional Module (F.M.). Upon completion of the F.M. the integrity of the ANOPP

system environment is validated and insured by XFM taking corrective action as required.

Upen return to XFM, XM interrogates the ANOPP error indicator NERR to determine non-
fatal error occurrence during the F.M. Processing Phase. If error occurrence is detected
then XMERR is called via XLINK to perform the Error Processing Phase. Upon return from

XMERR, XM calls XCSP to proceed with the CS Processing Phase.
After once calling XBS and XRT, XM cycles between calling XCSP and XFM or XMERR.

Error Philosophy: No error is detected directly within the driver XM. However,

error detection does occur within the execution phases called into execution by XM. If a
fatal error, wﬁich inhibits recovery with further processing, is detected then ANOFP is
abnormally terminated via the Error Termination Phase and there is no return to XM. If a
non-fatal error is detected within XBS, the indicator NERR is set. XM does not detect

this error return from XBS and allows XRT to be called. XRT upon completion will recognize
error occurrence during execution of XBS or itself and will abnormally terminate via the
Error Termination Phase. If a non-fatal error is detected within XCSP or XFM then the

NERR indicator is set and action is taken upon return to XM.

3.5-27

EXECUTIVE MODULES

3.5.4 Execution Phases

The Executive Management System (EM) includes eight execution phases corresponding

respectively to the eight tasks given in the Overview Section (Section 3.5.1). These

phases, along with the controlling EM Module, are as follows:

1.

2.

Initialization Phase (XBS)

Primary Edit Phase (XRT)

Control Statement Processing Phase (XCSP)
Functional Module Processing Phase (XFM)
Error Processing Phase (XMERR)

Secondary Edit Phase (XCA)

Normal Termination Phase (XEN)

Error Termination Phase (XXFMSG)

3.5.4.1 Initialization Phase (XBS)

Purpose: The XBS Module controls the Initialization Phase. The ANOPP Title Page is

printed and all initialization requirements for DBM, DSM, EM, and the General Utilities

are performed.

Input: Input to XBS is the Primary Input Stream which contains the optional AN@PP

CS and the required STARTCS CS.

Output:
1. Data Base Structures
XSUNIT - the data unit created for subsequent usage by the Executive Manage-
ment System (EM) for scratch data members temporary to ANOFPP.
DATA - the data unit created for subsequent usage by EM in processing the

DATA control statements.

Common Block Variables
Required variables in the following common blocks are initialized:
/XCS/, /XCSFM/, /XCVT/, /XDBMC/, /XDSMC/, /XSPT/.

Control Structures
The following Control Structures are allocated and initialized in Global
Storage:

Alternate Name Table (ANT)

Data Unit Directory (DUD)

3.5-28

EXECUTIVE MANAGEMENT SYSTEM

Member Description Blocks Table (MDBT)
User Parameter Table (UPT)
User String Table (UST)

Active Member Directory (AMD)
Lata Table Directory (DID)
Library File Directory (LFD)
Member Directory (MD) work area

Functional Description: The XBS module performs the ANOPP Initialization Phase

requirements. The Primary Input Stream is processed through the STARTCS control state-
ment. If the optional ANGPP CS is present, the values specified for the ANOFP system
parameters replace the ANOPP system default values for subsequent initialization pro-
cedures. If the AN@PP CS is omitted, the ANOPP system default values are used for sub-

sequent initialization procedures.

DSM initialization requirements include setting parameter values in the common block

/XDSMC/ and initializing Global Dynamic Storage according to the length required.

DEM initialization requirements include setting parameter values in the common block
/XDBMC/, creating the data units DATA and XSUNIT for EM utilization, and allocating
required control structures. These control structures are the DUD, DTD, AMD, and LFD. A
working storage block for the MD is also allocated. The DUD and DTD contain information
which must not be moved to other core locations when DSM consolidations occur; thus the

DUD and DTD are the first allocated blocks in GDS.

EM initialization requirements include setting parameter values in the common blocks
/XCVT/, /XCS/, /XCSFM/, and /XSPT/. The following control structures are allocated and
initialized in GDS: MDBT, ANT, UPT, and UST. The ANT is initialized for zero allocated

entries. The others are initialized using installation default values.
There are no additional initialization requirements imposed by the General Utilities.

Logical Description: XBS performs initialization functions for EM and calls four

additional modules to perform the remaining Initialization Phase requirements.

Immediately upon entry the module XBSTP is called to print the standard ANOPP title

page.

3.5-29

EXECUTIVE MODULES

The module XBSIN is then called by XBS to determine the presence or absence of the
AN@PPP CS in the Primary Input Stream and to initialize parameters according to either the
ANPPP CS specification or the installation default values. Detection of the STARTCS in

the Primary Input Stream is also accomplished.

The module XBSDSM is called by XBS to initialize Global Dynamic Storage according to

the length specified either by the ANPPP CS or by the installation default value.

The module XBSDBM initializes the Data Base Management System Control and data base
structures. The Data Unit Directory (DUD) and Data Table Directory (DTD) are insured to
be the first blocks allocated in GDS. They are not expandable tables and thus are al-
located for fixed numbers of entries which may not be exceeded during ANOPP execution.
The AMD, MD, and LFD control structures are allocated according to parameterized default
values. The data units, XSUNIT and DATA, are created with corresponding entries made in

the DUD.

Upon completion of DSM and DBM initialization, XBS allocates the EM control structures
which include the MDBT, ANT, UPT, and UST. An entry in the MDBT is allocated for the
Primary CS Set, or MO0l member, and the entry is initialized. Alternate names exist only
during the Functional Module Processing Phase, thus the ANT is allocated for zero-entries,

The UPT and UST are allocated according to installation default values.

XBSTP, XBSIN, XBSDSM, and XBSDBM are the primary modules called by XBS to perform

Initialization Phase functions.

Error Philosophy: If an error occurs in allocating or initializing any control or

data base structure, then ANOPP is abnormally terminated. Fatal errors encountered while
initializing DBM and DSM are processed respectively via the member manager module MMERR
and the DSM module DSMERR. Other fatal errors invoke the EM Error Termination Phase for

processing.

An error encountered in processing the AN@PP CS is not immediately fatal. The
Initialization Phase continues to completion and the ANOPP error indicator, NERR, is set
to .TRUE. upon exit from XBS. ANOPP is subsequently terminated upon completion of the

Primary Edit Phase.
3.5-30

EXECUTIVE MANAGEMENT SYSTEM

3.5.4.2 Primary Edit Phase (XRT)

Purpose: The Primary Edit Phase (XRT) module is called by the Executive Monitor (XM)
module after the Initialization Phase (XBS) module has completed its task. The Primary
Edit Phase examines and validates control statements in the Primary Input Stream and
builds a record for each CS on the root member, M00l, in a format that is recognized by
the Control Statement Processing Phase (XCSP). The Primary Edit Phase allocates a new
Mxxx member name in sequential order each time a CALL CS is encountered in the Primary
Input Stream beginning with M00Z. A Member Description Block entry (MDB) is initialized
in the MDBT for the Mxxx just allocated. The Primary Edit Phase builds a Uxxx type member
each time an UPDATE or a TABLE CS is encountered with a SPURCE=* specification. The
S@URCE=* specification indjcates that input expected for the particular CS will be found
in the input stream, beginning with the card image immediately following the CS and includ-
ing all images down to but not including the END* ¢€S. Upon completion of its task, the
Primary Edit Phase will terminate ANOFPP processing if an error was detected in the Initi-
alization Phase prior to XRT entry or in the Primary Edit Phase, or if the user option to
terminate after Edit Phase is set. Otherwise, the Primary Edit Phase will return control

to the Executive Monitor (xM).

Input: The primary input to the Primary Edit Phase (XRT) is the Primary Input Stream
which begins with the control statement following the STARTCS statement and ends with the
ENDCS statement. Other pertinent input is described below; particular input required for

¢S processing is not necessary for understanding and is not included.

1. Data Base Structures
XSUNIT - +the ANOPP system scratch unit, XSUNIT, contains no members.
DATA - the DATA unit contains no members.

2. Common Block Variables

/Xcs/

N@GH - Primary-Edit-only indicator is set to .TRUE. if processing is to
be stopped when the Primary Edit Phase is complete. When the
indicator is set to .FALSE. the Primary Edit Phase returns to XM
upon completion.

/XCVT/

NERR . Executive System Logical Error indicator is set to .TRUE. if an

error was detected in the Initialization FPhase (%BS). In case of

3.5-31

EXECUTIVE MODULES

such an error, XRT edits and builds CS records but suspends writing
of those records to the MOOl member. At completion of the Primary
Edit Phase processing will be terminated.

3. Control Structures
MDBT - the Member Description Block Table resides in GDS and is a system
table type 1. An entry (MDB) in the MDBT is initialized for the
MOCl root member. Initial settings in the MDB indicate that the
MO0l root member has yet to be constructed.

Cutput:
1. Data Base Structures
MOO1 - The primary output of the Primary Edit Phase is the Primary CS Set
residing as the MOOl root member on XSUNIT in a format that is
recognized by the Control Statement Processing Phase. MO0l contains
a variable length control statement (CS) record for each complete
CS edited in the Primary Input Stream and a Label Record that
provides a cross-reference to each labeled CS on the M00l member.
If an error is detected, writing to the M00Ol member is suppressed,
but editing continues to the last CS in the Primary Input Stream.
Uxxx - A Uxxx type data member in card image (CI) format resides on XSUNIT
unit for each UPDATE CS or TABLE CS with SPURCE=* specification
encountered in the Primary Input Stream. A Uxxx type data member
resides on DATA unit for each DATA CS encountered in the Primary
Input Stream. The Uxxx contains the card image input tc the CS
which will be utilized in subsequent execution of the CS.
2. Common Block Variables _—
/XCSs/
MEMCUR -~ The current member in execution is defined by MEMCUR as MO0OL.
/XCVT/ ' .
NERR - On exit from the Primary Edit Phase (XRT) the executive system
logical error indicator is always set to the no error condition
of .FALSE.

3. Control Structures
MDBT - The Member Description Block entry for the (MDB) MO0l rcot member is
in executable format. Also, an MDB entry is initialized for each
Mxxx type member name assigned as a result of a CALL CS successfully
edited in the Primary Edit Phase. Initial values in the MDB indicate
that the Mxxx member has yet to be constructed.

Functional Description: The XRT module performs all operations necessary in con-

structing the MO0l root member. The Primary Input Stream is processed beginning with the
control statement that follows the STARTCS control statement. Processing terminates when
the ENDCS control statement is encountered. An unformatted variable length control state-
ment record is built for each complete control statement image in the Primary Input Stream.
The control statement records are written on the MO0l root member unless an error is

detected. If an error occurs, writing on the MOOl member is suppressed, but editing and

3.5-32

EXECUTIVE MANAGEMENT SYSTEM

building €S Records continues until the ENDCS control statement is encountered. A Label
Record is built identifying the number of every CS Record where a label is present and
giving the label name. The Label Record is written as the last record on the MOOl root

member.

As the Primary Input Stream is processed and the control statement records are
built, the control statement images are echoed if the system parameter JECH@ is set to
TRUE. or an error is detected in building the CS Record. If an error is detected in
building the MO0l member, the system parameter JECH® is automatically set so that sub-
sequent CS images will be echoed, and writing on the MO0l member is inhibited. A control
statement is considered in error under any of the following circumstances:

The maximum number of continuation cards allowed per CS is exceeded.
An unrecognizable field is detected on the CS image.
The form of a label field is invalid or a duplicate 1abel is detected.

CS name is invalid to the Primary CS Set.

o Fow N

Syntax of the CS is invalid for the corresponding CS name.

If a CS image exceeds the maximum allowable card images for a valid CS, the control
statement is arbitrarily terminated at the end of the last allowable image and processing
continues as it would for a valid CS Record. The image immediately following this CS in

the Primary Input Stream will be read and processed as the next CS image.

A syntax check is performed on each Control Statement Record to insure that the

format of the CS meets the requirements of the particular CS name.

All references to CS labels are verified. CS names valid to the Primary CS Set
require special processing during the Primary Edit Phase. All label references on the IF
and GPTP control statements are entered in the Label Reference Table maintained by the XRT
module. When all control statements have been processed the table is used to validate
that all labels which have been referenced are present in control statements in the

Primary Input Stream.

A comment CS is one in which the end-of-data character ($) is the first non-blank
character on the CS image. A comment control statement is included as a CS Record with

C@NTINUE substituted as the CS name.
3,5-33

EXECUTIVE MODULES

A DATA CS is processed completely in the Primary Edit Phase. C@NTINUE is substituted
as the CS name in the CS Record and the images following the DATA CS in the Primary Input
Stream down to the END* CS are written as a data member on the system unit DATA in card
image (CI) format. The END* CS which indicates the end of input for the DATA member is

not included on the member. The data member name is specified on the DATA CS.

For each CALL CS encountered in the Primary Input Stream, an Mxxx data member name is
assigned and an MDB entry is made in the Member Description Blocks Table with initial
settings. The initial setting indicates the Mxxx member has not been constructed and does
not exist on XSUNIT. Mxxx data member names are assigned sequentially where the xxx
portion of the name is Hollerith digits 002-999. The Mxxx member will be constructed
during the Secondary Edit Phase upon the first execution of the CALL CS in the CS Pro-

cessing Phase.

The UPDATE and TABLE control statements require special processing when S@URCE=* is
specified. The S@PURCE=* specification indicates that input for the UPDATE or TABLE follows
the CS in the Primary Input Stream and includes all images until an END* CS is detected.
These card images are saved on a Uxxx member with one card image per record in CI format.

A Uxxx type data member is built on the system data unit XSUNIT each time such an UPDATE
or TABLE CS is detected. Uxxx member names are assigned sequentially with the xxx portion

of the name being Hollerith digits 001-999. g

If any CS requiring special handling of the card images immediately following in the
input stream (DATA, TABLE, or UPDATE) is in error, then the images in the input stream

will be skipped through the END* CS and will not be processed as described above.

The M0OOl, root member, is considered in error if a control statement in the Primary
Input Stream is found to be in error or if an unsatisfied label reference is detected.
When the MOOL member is considered in error, writing to all data units (XSUNIT and DATA)

is suspended as indicated above.

Detection of the ENDCS control statement indicates the end of the Primary Input

Stream. If the end of the input file is detected before the ENDCS statement is encountered,

3.5-34

EXECUTIVE MANAGEMENT SYSTEM

and ENDCS statement is simulated for complete recovery. The XRT module makes a normal

return if all of the following conditions are met:

1. Primary Input Stream processing is complete (an ENDCS Control statement is
detected or simulated)

2. The MO0l root member is error free (no error was detected on any edited con-
trol statement)

3. The user option to terminate after Primary Edit Phase (N@GE) is not set.

y, The Initialization Phase was error free.

If all of these conditions are not met, the XRT module aborts upon completion of

Primary Iuput Stream processing.

Logical Description: Immediately upon entry to the XRT module, the XRTI module is

called to allocate and initialize expandable Local Dynamic Storage blocks required to
build the Control Statement Record, the Label Record, and the Label Reference Table, and
to initialize appropriate variables in the /XR@@T/ common block. The CS Record block is
allocated to build the maximum length CS Record. The Label Record and Label Reference

blocks are allocated for an arbitrary number of label entries.

The XRT module then opens the MO0l rocot member for write via scratch access and
begins to process the Primary Input Stream. The following process is iterated for each

control statement read until the ENDCS statement is encountered:

A. The XCR module is called to crack each image read from the Primary Input
Stream. XCR builds a table from each image that includes every field detected
on the CS image preceded by an integer type code field identifying the field
as one of the ANOPP field types.

B. 1f the maximum number of images per CS is read and the end-of-data character
($) is not detected the XRTTC module is called to simulate a complete control

statement as if it is complete.

C. The XRTBAD module is called if unrecognizable fields are detected on the
current control statement. XRTBAD prints each unrecognizable field found on

cs.

D. The XRTBCS module is then called to build a valid control statement record
from the cracked table produced by XCR. XRTBCS strips off the first, and
possibly the second, field in the cracked field table looking for a valid label
name field, if present, and a CS name valid to the Primary CS Set. The label
name, if present, and the CS name are entered in the CS Record. Upon exit
from XRTBCS, the CS Record is complete and is read to be written on the M0Ol
root member.

3.5-35

EXECUTIVE MODULES

E. If a valid label field was detected by XRTBCS then the XRT module calls
XRTBLR module to add an entry to the label Record. Fach entry in the Label
Record identifies the number of the CS record and the label name.

F. If the CS is still error free after the syntax check, XRT calls XRTLRF module
to pick up label references from IF and G@T@ control statements. Label
references are entered in a single-word entry in the Label Reference Table.

G. XRT then echoes the CS image if the user print option JECH@ is set or if
an error was detected in the current CS or a previous CS.

H. The XRTCSS module is then called to process the special CS names, DATA, CALL,
UPDATE, and TABLE. A DATA control statement is processed completely, sub-
stituting CONTINUE as the CS name in the CS Record Preface, and writing data
input on the specified data member on the system unit named DATA in card image
(CI) format. For a CALL CS an Mxxx data member name is assigned and the member
name is entered in the CALL CS Record Preface. A corresponding MDB entry is
also made and initialized in the MDBT. Special processing is required for the
UPDATE and TABLE statements if S@URCE=% is specified. For these control state-
ments a Uxxx member name is assigned, input for the CS is written on the
member in CI format, and the Uxxx member name is entered in the UPDATE or TABLE
CS Record Preface. Upon exit from the XRTCSS module all special CS processing
is complete.

I. Current CS processing is now complete and the CS Record is written on the M00O1

root member if the Primary Input Stream has been error free and there were no
Initialization Phase Errors.

Primary Input Stream processing is complete when an ENDCS control statement is edited
and the corresponding CS record placed on MOOl. Then the XRTLSA module is called to
validate that all label references (found in the Label Reference Table) have been satis-
fied. If all label references are satisfied then the XRT module writes the Label Record
on the MOOl root member as the last record and enters the label record length in the

member description block entry in the MDBT for the MO0l root member,

The MCOl root member is now complete and is closed by the XRT module. XRT then
defines MOOL as the Mxxx member now in execution by setting the output variable MEMCUR.
The XRTRS module is then called to free the Local Dynamic Storage blocks used for building
the CS Record, the Label Record, and the Label Reference Table and to release Local

Dynamic Storage.

If an error was detected in the Initialization Phase or while building the MO0l
member, or if the N@GP parameter is set to .TRUE., then XRT aborts. Otherwise, a normal

return is made to XM.

3.5-36

EXECUTIVE MANAGEMENT SYSTEM

Error Philosophy: The Primary Edit Phase aborts via XXFMSG fatal message writer if

an error is detected while opening the MO0l root member or if there is insufficient Local

Dynamic Storage to expand any of the ¥RT expandable LDS blocks.

A missing ENDCS control statement in the Primary Edit Phase does not make further
processing impossible, so in such a case, an ENDCS statement is simulated for complete

recovery.

Errors detected in the Primary Input Stream while building the MOO1 member are not
immediately fatal. Errors detected in the Primary Edit Phase will result in error messages
printed before the appropriate CS image is echoed, will inhibit writing to the MO0l member,
and will result in an error flag setting for the MOO1l member. Editing and building CS
Records will continue until the Primary Input Stream has been completely processed, and

XRT will then abort the Primary Edit Phase.

3.5-37

EXECUTIVE MODULES

3.5.4,3 Control Statement Processing Phase (XCSP)

Purpose: The XCSP module controls the Control Statement (CS) Processing Phase. The
Primary Input Stream is executed from beginning to end allowing for execution of optionally
supplied Secondary Input Stream(s). This phase is temporarily interrupted with return to
the driver XM whenever either a non-fatal error is encountered or execution of Functional

Module is requested.

Input: The primary input to XCSP is discussed below. Additional input, although
required for particular CS processing, is not necessary for understanding and is not
included.

1. Data Base Structures

XSUNIT - The unit XSUNIT contains Mxxx members and Uxxx members where Xxx
is display code of an integer 001-999. MO0l is the Primary CS
Set or root member and is always present. There is an Mxxx member
where xxx is greater than 001 for each Secondary CS Set which has
been brought into execution at least once via a CALL CS. There is
no limit to the number of Mxxx members which may be in completed
execution or suspended execution but there is one and only one
Mxxx which is in current execution. A Secondary CS Set is in
completed execution if it has been brought into execution via a
CALL CS and execution has been completed. A Primary or Secondary
CS Set is in suspended execution if its execution has been
temporarily interrupted by a Secondary CS Set brought into execution
via a CALL CS. A Primary or Secondary CS Set is in current
execution if it contains the next CS tc be executed. Any Mxxx
member in current or suspended execution contains at least one CS
record to be executed. For MO0l this is the ENDCS CS and for
Mxxx it is the RETURN CS. A Uxxx member exists for each TABLE
CS and for egch UPDATE CS with S@URCE=?* specification in the

Primary CS Set. All Mxxx and Uxxx members are closed.

3.5-38

EXECUTIVE MANAGEMENT SYSTEM

DATA - The Unit DATA contains a member corresponding to each DATA CS

encountered in the Primary Input Stream during the Primary Edit

Phase.
2. Common Block Variables

/XCs/

MEMCUR - name of the Mxxx member in current execution

MXMDB - IDX of the Member Description Block Table (MDBT) residing in GDS

MNAME,MCUR ,MCALL ,MRL,MLL - position parameters for a Member Description
Block (MDB) which is an entry in the MDBT

/XCSFM/

LANT _ IDX of the Alternate Names Table (ANT) residing in GDS

LUPT - IDX of the User Parameter Table (UPT) residing in GDS

LUST - IDX of the User String Table (UST) residing in GDS

3. Control Structures

MDBT - the Member Description Block Table (MDBT) resides in GDS and is
a System Table Type 1 which contains a Member Description Block
(MDB) entry for each Mxxx name assigned.

ANT - the Alternate Names Table (ANT) is a System Table Type 1 residing
in GDS, which defines the active set of alternate names. It always
has zero entries on entry. Alternate names provide only an inter-
face capability between the F.M. and the CS Stream being executed
and thus exist only during the F.M. Processing Phase.

UPT/UST - the User Parameter Table (UPT) is a System Table Type 1 and the

User String Table (UST) is a System Table Type 2; both reside in
GDS. The UPT and UST in combination define all user parameters.
There is an entry in the UPT, and UST if required, for each user
parameter currently defined.

4. Initial Entry

For the initial entry to XCSP the following environment exists:

a. XSUNIT contains the MOOL member and Uxxx members may or may not exist.
b. DATA may or may not contain members.
c. MEMCUR contains the name MOOl.

d. The MDBT contains an executed MDB for MOOl with the MNAME position =
M001, MCUR position = 0, MCALL position = blanks, MRL position> 0, and
MLL position > 0.

e. The UPT, UST, and ANT contain zero éntries. All data members are closed.

OutEut:

1. Data Base Structures

All members on the units XSUNIT and DATA are closed.
3.5-39

EXECUTIVE MODULES

2. Common Block Variables
The primary output from XCSP upon return to the XM driver is definition of
the reason for CS Processing Phase interruption and definition of the specific
CS in a CS Set with which processing will continue upon resumption of the CS

Processing Phase. This information is provided through common block variables.

/XCVT/

NERR - the logical ANOPP error indicator. It is set to .TRUE. if a non-
fatal error occurred during processing a CS thus causing the
interruption; otherwise it is .FALSE.

/XCS/

REQ - if an EXECUTE CS precipitated the interruption of XCSP then REQ
contains the integer corresponding to the specific Functional
Module (F.M.) requested. Integer and F.M. correspondence is
determined upon F.M. installation.

MEMCUR - the name of the current Mxxx member being executed.

MXMDB - the IDX of the MDBT in GDS. The current CS record pointer (MCUR)

in the MDB entry for the current Mxxx member is set to the CS
record resulting in the interruption.

Functional Description: The CS Processing Phase begins with execution of the first

CS in the Primary CS Set which is contained on the MO0l member on XSUNIT. Execution of
subsequent control statements in the Primary CS Set is sequential through the final CS
which is the ENDCS. The sequential flow, however, may be altered by special control
statements which transfer execution to a labelled CS within the Primary CS Set. One such
CS is the G@TA. After such an alteration, sequential execution is resumed, thus the ENDCS
is eventually executed. Execution of the ENDCS invokes the Normal Termination Phase which

terminates ANOPP.

Execution of the MO0l member is temporarily suspended upon execution of a CALL CS.
The CALL CS requests that a Secondary Input Stream be brought into execution and completed

before continuing execution of the current M0Ol member.

Upon the first execution of a CALL CS, the corresponding Secondary CS Set has not yet
been constructed and does not exist on XSUNIT as a Mxxx member. However, during the
Primary Edit Phase when MO0l was constructed, an Mxxx name was assigned for each encoun-

tered CALL CS and a corresponding MDB entry in the MDBT was allocated. The MDB entry has

3.5-40

EXECUTIVE MANAGEMENT SYSTEM

initialized settings which indicate the corresponding CALL CS has not previously been
executed thus the Mxxx member does not exist. Upon the first execution of a particular
CALL CS, the Secondary Edit Phase (XCA) is invoked to validate the specified Secondary
Input Stream and to construct a corresponding Secondary CS Set residing on XSUNIT as the
Mxxx member previously assigned. The Mxxx member has the same format as the root member,
MOOl, and it contains the set of control statements which compose the Secondary Input
Stream in executable form. The last CS record in the Mxxx member is a RETURN CS simulated
during the Secondary Edit Phase to allow eventual return of control to M0Ol. Upon comple-
tion of the Secondary Edit Phase, the MOOl member is put in suspended execution by trans-

ferring execution control to the new Mxxx member.

Upon a subsequent execution of a particular CALL CS, the specified Secondary Input
Stream does exist in executable form as the Mxxx member previously constructed during the
Secondary Edit Phase. Thus, the Secondary Edit Phase is not invoked and the MO0l member
is put in suspended execution immediately by transferring execution control to the corre-

sponding Mxxx member.

When execution control is transferred to a Secondary CS Set, execution begins with
the first CS record and continues sequentially, until the final CS, the RETURN, is en-
countered. The sequential flow may be altered, as in the Primary CS Set. Execution of
the RETURN indicates the Secondary CS Set has been completed and control is transferred
back to the Primary CS Set. Execution resumes with the CS immediately following the CALL

¢S which suspended execution by the Primary CS Set.

During execution of a Secondary ¢S Set, a CALL CS may also be encountered. The
currently executing Secondary CS Set is put in suspended execution, the Secondary Edit
Phase is invoked upon the first execution of the particular CALL and execution control is
transferred to the specified Mxxx member, or Secondary CS Set. The process invoked by
encountering a CALL CS in a Secondary CS Set is identical to the process invoked by

encountering a CALL CS in the Primary CS Set.

3.5-41

EXECUTIVE MODULES

There is no limit to the number of Mxxx members which may be in suspended execution.
Upon completion of the "called" Secondary CS Set, the "calling" CS Set is brought back
into current execution and execution resumes with the CS immediately following the CALL CS
which invoked the suspended execution. Eventually as the suspended Secondary CS Sets are
one by one brought back into current execution and completed, the Primary CS Set is
brought back into current execution. The last CS record in the Primary CS Set is the
ENDCS which when executed invokes the Normal Termination Phase. The Normal Termination
Phase terminates ANOPP with no return to XCSP. Thus, ANOPP is terminated by invoking the

Normal Termination Phase upon execution of the ENDCS during the CS Processing Phase.

The CS Processing Phase is temporarily interrupted by two conditions. The first is
the request for a Functional Module (F.M.) to be executed via the EXECUTE CS. The second

is a non-fatal error occurrence while processing a CS record.

The EXECUTE CS is processed by XCSP as follows. The Alternate Names Table (ANT) is
constructed according to the alternate name specifications on the EXECUTE CS. The F.M.
and ANCPP executive modules will utilize the ANT during the F.M. Processing Phase which
follows XCSP interruption and return to the driver XM. A set of alternate names defined
" by the ANT is valid only during the F.M. Processing Phase. All entries in the ANT are
deleted upon completion of that Phase. Thus, the ANT always has zero entries upon entry
to XCSP. The name of the F.M. to be executed has been pre-processed during the Primary or
Secondary Edit Phase; and the EXECUTE CS record upon execution contains an integer which
corresponds to the F.M. name specified on the CS card image in the Primary or Secondary
Input Stream. The correspondence between a particular integer and a particular F.M. is
unique and was assigned when the I.M. was installed into ANOPP. This integer which is
sufficient for the F.M. Processing Phase to determine, load, and execute the proper F.M.

is placed in the XCSP output variable REQ (/XCS/ common block).

If a non-fatal error occurs during the processing of any CS, the ANOPF error
indicator NERR is set toc a .TRUE. value. Whether or not that CS processing was completed

or partially completed depends on the particular CS.

3.5~-42

EXECUTIVE MANAGEMENT SYSTEM
Upon XCSP interruption and return to the driver XM, the existing enviromment is
defined sufficiently to allow for resuming the CS Processing Phase by a subsequent entry

to XCSP. All data members utilized are closed.

A11 CS records are processed by the XCSP modules according to individual require-
ments. The card images of the CS are printed as the CS is executed depending on the

system parameter JECHP value.

Logical Description: In the following logical description of XCSP, there is no

attempt to discriminate between the initial entry or a subsequent entry to XCSP. Although
the initial entry to XCSP always begins processing with the first CS record in M0Ol and a
subsequent entry resumes processing with a CS record in any Mxxx member, there is no
logical differentiation required internal to the XCSP module. The first entry to XCSP is
logically identical to any subsequent array. The environment which is defined by the
input to XCSP dictates either the beginning of CS processing or a resumption of CS pro-

cessing and both environments are processed identically.

On entry, XCSP calls the XCSPM module to initialize the environment to resume pro-
cessing with the next CS record in the currently executing Mxxx member. Local Dynamic
Storage (LDS) is initialized. The Mxxx member, defined by MEMCUR, with which execution is
to begin is opened to read. In the MDBT, the MDB corresponding to Mxxx contains the
length of the largest CS record at MRL position and the length of the label record at MLL
position. This information is used to allocate in LDS a block large enough for any CS
record on Mxxx and a block sufficiently large for the label record. The label record on
Mxxx is then read into the LDS label block to define all valid label names and the corre-
sponding CS records for this Mxxx member. The MCUR entry of the MDB contains the posi-
tion of the last CS record executed. The Mxxx member is positioned so that the next

record read will be the CS record with which execution is to resume.

Upon return from the XCSPM module, XCSP enters an indefinite iteration of processing
the next CS in the current Mxxx member. The current record pointer is incremented by one
to define the position of the CS record to be executed. Mxxx is positioned to the CS

record to be executed and it is read into the CS record block in LDS. The card image of

3.5-u43

el
o
N

Yo - .
LTI C

EXECUTIVE MODULES

this €3 is then printed if the system parameter JECH@ is set accordingly. The name of the
CS is identified and the appropriate module is called to process the CS. A list of the
valid CS names for processing by XCSP along with the name of the module called by XCSP to

execute the CS is given in Table 3.

All the modules which process a CS have the same input available and must satisfy the
same output requirements with respect to XCSP interface. The input uniformly required is
the CS record which fully defines the act to be performed. Additional input is specific
to the particular CS. The output environment which must be provided upon return to XCSP
must allow XCSP to continue its iterative processing. Specifically, the output must

include the following:

1. MEMCUR defines the currently executing Mxxx member.

2. The MCUR entry in the MDB corresponding to the current Mxxx must contain the
position of the next CS record to be executed minus 1. In most cases where
the sequential flow is unaltered, the value will be unchanged from the input
value and will reference the CS record just executed. In other cases where
a control statement alters the sequential flow, the value must be reset such
that it points to the CS immediately before the next CS to be executed. This
setting always allows XCSP to increment the current record position by 1 in
continuing the iterative loop or upon a subsequent entry of XCSP when the
iterative loop is again begun.

3. The label block in LDS contains the label record of the current Mxxx.

L. The CS record block in LDS must be large enough for any CS record on the
current Mxxx. Usually the CS record for the CS just completed has remained
unaltered in the block but this is not required. The size of the LDS block, but
not necessarily the contents, must be insured.

5. Mxxx is opened to read and is positioned such that the next record read will
correspond to the next CS to be processed.

6. The current Mxxx member is the only member open for any reason.

Most of the CS processing modules perform functions which are independent of XCSP
interface requirements. The basic input to these modules is the CS record which fully
defines the action to be performed. Other input for particular CS processing modules may
be required but is not relevant to nor dependent upon XCSP interfaces. Upon entry to
these modules the XCSP output requirements are automatically satisfied and remain un-

altered upon return to XCSP. No change has occurred to alter the sequential execution

3.5-44

EXECUTIVE MANAGEMENT SYSTEM

Control Statement Name ANOPP Executing Module
ARCHIVE XAR
ATTACH XAT
CALL XCA
C@NTINUE XC@
CREATE XCT
DETACH XDT
DR@P XDR
ENDCS XEN
EXECUTE . XEX
GOTY XG@
IF XIF
L@AD XLD
PARAM XPA
PRACEED XPR
PURGE . XPU
RETURN XRE
SETSYS XSS
TABLE XTB
UNL@AD XUN
UPDATE XUP

Table 3. Valid ANOPP Control Statement Names Processed by XCSP.

3.5-45

EXECUTIVE MODULES

thus CS processing always continues with the CS record immediately following the CS just
completed. The modules not of this type are those which process the CALL, ENDCS, EXECUTE,

GPT@, IF, and RETURN control statements.

Processing of the EXECUTE CS by the XEX module does affect XCSP execution and has
additional output requirements. The required ocutput environment is also present on entry
to XEX as in the majority of CS processing modules. The XEX module additionally provides
upon return to XCSP the integer corresponding to the F.M. to be executed via the common
block /XCS/ variable REQ. XEX also builds the ANT in GDS to include alternate names
specified on the EXECUTE CS. Upon entry to XEX, the ANT always has zero allocated entries
and upon exit the ANT has the exact number of alternate names specified on the EXECUTE CS
which is zero or greater. Upon return to XCSP, a local variable is set to indicate that

XCSP iterative processing is to be interrupted due to a F.M. execution request.

The G@T® CS and the IF €S usually change the execution sequence upon return to XCSP
and thus the modules XG@ and XIF must insure the output requirements for XCSP interface
are satisfied. The GATP CS will always transfer execution control to a CS record in the
current Mxxx member whereas the IF CS will do so conditionally. The CS to which transfer
is made is usually not but may be the CS immediately fcllowing the GIT@ or IF statement.
Input to XG@ and XIF include the CS record and the label record. The position of the next
CS to be executed is determined from the label record. The Mxxx member is positioned to

this CS record and MCUR is set to that position minus 1. Other output requirements are

satisfied upon entry with no need for alteration.

The ENDCS indicates the normal completion of the Primary CS Set and upon execution
the normal termination phase is invoked. The XEN module closes MO0l and terminates ANOPP

without return to XCSP. Thus XEN has no output requirements.

The CALL CS requests that the current Mxxx member be suspended and a specified
Secondary Input Stream be executed; thus, the processing module XCA must insure the
output requirements upon return to XCSP are satisfied. Upon entry to XCA, the name of the
Mxxx to be executed is contained in the CALL CS record. The MDB entry in the MDBT corre-

sponding to this Mxxx is interrogated to determine if this CALL has been executed previously

3.5-46

EXECUTIVE MANAGEMENT SYSTEM

and the executable form of the Secondary Input Stream has been constructed and is avail-
able for usage or if this CALL has not been executed previously and the executable form is
not available on Mxxx for usage. If either MRL or MLL entries in the MDB are zero, then
Mxxx has not yet been constructed; if either is non-zero then Mxxx has been constructed.
If construction has not yet occurred, then XCA invokes the Secondary Edit Phase to vali-
date the Secondary Input Stream and construct the executable form, or Secondary CS Set, as
the Mxxx member on XSUNIT. See Section 3.5.4.6 for a full description of the Secondary
Edit Phase. If construction has previously occurred, then the Secondary Edit Phase is by-

passed.

XCA calls the module XCATRA to transfer execution to the Mxxx member containing the
requested Secondary CS Set. The current Mxxx member is closed and the LDS blocks for the
€S record and label record are freed. MEMCUR is set to the new Mxxx member to be exe-
cuted. MCUR in the MDB corresponding to the new Mxxx member is set to zero (0) indicating
the next CS to be executed is CS record number one (1). XCATRA then calls XCSPM to perform
{nitialization functions identical to those performed upon entry to XCSP. XCSPM opens
MEMCUR to read, allocates an LDS block sufficient for the largest CS record on MEMCUR,
allocates an LDS block for the MEMCUR label record and reads the label record into the
block, and positions MEMCUR to the next €S record to be executed which is the first CS
record. Upon completion of the XCATRA module the currently executing Mxxx member upon
entry to XCSP has been suspended and the specified Mxxx has been brought into current

execution. The output requirements for return to XCSP are satisfied.

Upon execution of a RETURN CS the module XRE is called by XCSP to reverse the process
performed by XCA and return control to the "calling" or suspended Mxxx. The "called"
member (MEMCUR upon entry to XRE) is closed, the LDS blocks are freed and LDS is released.
The name of the "calling" Mxxx member, defined by the name in the MCALL entry in the MDB
of the "called" Mxxx, is retrieved and placed in MEMCUR, thus, bringing back into exe-
cution the suspended Mxxx. The module XCSPM is then called to complete the output require-
ments. XCSPM opens MEMCUR to read, allocates an LDS block sufficient for the largest

¢S precord on MEMCUR, allocates an LDS block for the label record of MEMCUR and reads the

3.5-u47

EXECUTIVE MODULES

label record into the block, and positions MEMCUR to the CS record following the CALL
which invoked the suspension. Upon completion of XCSPM the return of control is complete

and the output requirements for XRE return to XCSP are satisfied.

When the current CS has been completely processed by the appropriate module and
return is made to XCSP, the iterative processing continues by processing the next CS. The
iterative processing of CS records continues either until the ENDCS is executed té termin-
ate ANOPP normally or until one of two conditions is encountered. The first condition is
the occurrence of a non-fatal error within a CS processing module. Upon return from a CS
processing module within which an error occurred, the ANOPP logical error indicator, NERR,
is set to .TRUE.; if no error occurred it is .FALSE. . The second condition is the
execution of an EXECUTE CS. Upon return from the XEX module, XCSP sets the local variable
ISTAT to 1 (one) indicating a F.M. execution request. If either NERR or ISTAT is set to
.TRUE. or 1 {(one) respectively, then the iterative CS processing is interrupted and XCSP
prepares for return to XM. The LDS blocks are freed and the current Mxxx (MEMCUR) is

closed. XCSP then returns to XM.

Error Philosophy: There are two types of errors which may occur within XCSP pro-

cessing, fatal and non-fatal errors.

A fatal error is the detection of a condition which inhibits further XCSP processing.
Fatal errors include: a) conditions which should not exist logically within ANOPP, such
as the XSUNIT does not exist when an attempt to open an Mxxx member is performed, and b)
conditions which prevent further processing to be productive, such as insufficient LDS for
required XCSP block allocations. Fatal errors may occur within any module called by XCSP
and ANOPP and are abnormally terminated immediately. Most XCSP called modules abort via
the EM auxiliary module XXFMSG which invokes the Error Termination Phase (see Section
3.5.4.8 for full description). However, the modules which process the Data Base Manage-
ment control statements generally utilize the MMERR and TMERR auxiliary modules. Fatal
Member Manager errors occurring during processing of Member Manager control statements
(ARCHIVE, ATTACH, CREATE, DETACH, DRZP, L@AD, PURGE, and UNL@AD) abort via MMERR. Fatal

errors occurring during processing of Table Manager control statements abort via TMERR.

3.5-4¢

EXECUTIVE MANAGEMENT SYSTEM

A non-fatal error is the detection of an abnormal condition during CS processing
which does not inhibit further productive XCSP processing. Generally, these are user
errors resulting from invalid Primary or Secondary Input Streams such as a non existent
unit or member specified as a Table Input Stream. The CS processing module detecting the
error prints an informative message via the EM auxiliary XXNMSG, the MM auxiliary MMERR,
the TM auxiliary TMERR, and the auxiliaries XLDERR and XUNERR. NERR is set to .TRUE.
before returning to XCSP. Before attempting to continue CS processing, XCSP will detect

the NERR setting and return to the driver XM for error processing.

3.5-49

EXECUTIVE MODULES

3.5.4.4 Functional Module Processing Phase (XFM)

Purpose: The XFM module controls the Functional Module (F.M.) Processing Phase. The

F.M. specified on the EXECUTE CS which interrupted the CS Processing Phase is brought into

execution.

Upon completion of the F.M. the integrity of the ANOPP system environment is

validated and insured before return to the driver XM.

Ingut:

1.

Data Base Structures

All data members are closed.

2. Common Block Variables

/XCS/

REQ -~ the integer corresponding to the F.M. to be executed. The corre-
spondence is determined when a F.M. is installed into ANOPP. For
each valid F.M, name which may appear on an EXECUTE CS there is a
unique integer in the range (NXLEV1+l) through (NXLEV1+NFM) inclusive.
The integer corresponding to the requested F.M. was placed in REQ
during the CS Processing Phase when the EXECUTE was encountered.

NXLEV1 =~ the number of executive modules which are called directly by XM and
are loaded at segmentation level 1. These include XBS, XRT, XCSP,
and XMERR. The F.M. integer assignments begin with NXLEV1+l,

NFM - number of F.M. installed. This includes the F.M. names which are
available for F.M. testing before permanent installation. These
names are FM1, FM2, FM3, FMu4, FMS. ’

/XCSFM/

LANT - the IDX of the Alternate Names Table in GDS.

3. Control Structures

ANT - the Alternate Names Table resides in GDS and is a System Table Type
1 which contains an entry for each alternate name specified on the
EXECUTE CS.

Qutput:
1. Data Base Structures

All data members are closed.
2. Common Block Variables

/XCs/
REQ - the value is zero indicating the F.M. Processing Phase is complete.
/XCVT/
NERR -~ the ANOPP logical error indicator is set to .TRUE. if an error oc-

cuwrred within the F.M. or during the post F.M. "cleanup" procedures

3.5-50

EXECUTIVE MANAGEMENT SYSTEM

which insured the system integrity. If nc error occurred, NERR is

.FALSE. .
3. Control Structures
ANT - the Alternate Names Table in GDS contains no entries. It is

initialized to zero allocated and zero current entries.

Functional Description: The F.M. which corresponds to the integer REQ is loaded and

brought into execution. Upon completion of the F.M. the integrity of the ANOPP system

environment is validated and insured.

The functions required to validate and insure the integrity of the ANOPP system
environment upon completion of a F.M. are called cleanup procedures. Cleanup procedures
validate conditions and perform corrective action if the condition is unsatisfied. The

conditions validated and the corrective action taken are described below:

1. Condition: LDS has been released
Corrective Action if condition unsatisfied: LDS is released

2. Condition: All user consolidation locks on LDS and GDS (excluding the master
Tock on GDS) are released.
Corrective action if condition unsatisfied: release user locks.

3. Condition: All data members are closed.
Corrective action if condition unsatisfied: logically close any data member
which is open. A logical close of a member is performed by deleting the member
from all MM tables indicating activity on the member. If the member was open
to write (direct or scratch) the newly written complete or partial member is
lost as if the write had never occurred.

4. Condition: all data tables are closed.
Corrective action if condition unsatisfied: any opened data table will be
Togically closed and released from core residence. If the table was opened
to alter, the altered table is not written to the member as in a normal close;
thus, the altered table is lost for subsequent retrieval.

If any of the conditions 1s unsatisfied, thus resulting in corrective action, the

F.M. Processing Phase is considered to be in error and NERR is set to .TRUE. .

The alternate names defined on the corresponding EXECUTE CS are valid only during
execution of a F.M., thus the ANT is initialized to zero allocated entries and zero

current entries to indicate a null set of names.

Upon completion of the cleanup procedures and ANT initialization, the F.M. Processing

Phase is terminated and return is made to the driver XM.

A3.5—51

EXECUTIVE MODULES

Logical pescription: Upon entry to XFM, REQ is validated to insure the integer

corresponds to & F.M. insta:.2d in the ANOPP system. REQ must satisfy the following
conditions:

NXLEV1 << REQ < NXLEV1 + NFM
The module XLINK is then called to load and execute the corresponding F.M.

XLINK contains the one-to-one correspondence of integers and F.M. names and calls the

appropriate F.M.. Upon completion of the F.M., the XLINK modules returns to XFM.

XFM continues by performing the cleanup procedures via calls to the modules XFMDSM,

XFMMM, and XFMTK.

XFMDSM validates that LDS has been released and that all user conscolidation locks on
LDS and GDS have been released. If necessary LDS is released, all user locks on LDS and

GDS are released, and the indicator NERR is set to .TRUE. .

XFMMM validates that all data members are closed. If a data member is found to be in
an open state then the member is removed from the MM tables AMD, MCB and NERR is set to
.TRUE. . If the member had been opened to write (direct or scratch) the member is closed
as if the open had never occurred; thus, the newly written member is unavailable on a

subsequent open.

XFMTM validates that all data tables are closed. If a data table is found to be in
an open state, it is removed from GDS core residence and NERR is set to .TRUE.. If the
table had been opened for alteration, the table is closed as if it had never been opened;

thus, the altered table is not written to the data unit for subsequent retrieval.

Upon completion of the cleanup procedures the module XFMANT is called to zero the
ANT. The GDS block containing the ANT is freed and a new GDS block allocated for zero
entries in the ANT is requested. The ANT is intialized to zero allocated and zero current

entries.

XFM is completed and returns to XLINK thereby returning to the driver XM.

3.5-52

EXECUTIVE MANAGEMENT SYSTEM

Error Philosophy: If an error has occurred during execution of a F.M., then the

ANOPP error indicator NERR has been set to .TRUE. before return from the F.M. to XFM via

XLINK.
Regardless of the error peturn status from the F.M., the cleanup procedures are

executed and if a corrective action is required NERR is set to .TRUE.

Upon return from XFM to XM if NERR is set to .TRUE. then XM determines action to be

taken.

ORIGINAL PAGE IS

OF POOR QUALITY 3.5
.5-53

EXECUTIVE MODULES
3.5.4.5 Error Processing Phase (XMERR)

Purpose: The module XMERR controls the Error Processing Phase. A non-fatal error
was encountered during processing of a control statement in either the CS Processing Phase
or the F.M. Processing Phase. Depending on the value of the system parameter JCPN, either:
1) the CS sequence is searched sequentially forward for either a PRPCEED CS or the ENDCS
CS whichever is encountered first; or 2) no action is taken allowing the CS Processing

Phase to resume with the next CS following the CS in error.

Input:
1. Data Base Structures
XSUNIT - the unit XSUNIT contains all Mxxx members constructed by the
Primary and Secondary Edit Phases. All Mxxx members are closed.
2. Common Block Variables
/Xcs/
MEMCUR - nmname of the Mxxx member on XSUNIT in current execution.
MXMDB - IDX of the Member Description Block Table (MDBT) residing in GDS.
MNAME, MCUR, MCALL, MRL, MLL - position parameters for a Member Description
Block (MDB) which is an entry in the MDBT.
/XSPT/ ‘
JCON - the logical system parameter indicating the action to be taken by
XMERR. If JCPN = ,TRUE., then no action is taken. If JC@N =
-FALSE., then the CS sequence is searched for a PR@CEED CS or the
ENDCS whichever occurs first.
3. Control Structures
MDBT - the Member Description Block Table (MDBT) residing in GDS. There
is an MDB, or entry, for each Mxxx name assigned. The MDB contains
descriptive and status information about the Mxxx.
OutEut:

1. Data Base Structures

XSUNIT - all Mxxx members remain unchanged and are closed.

2. Common Block Variables

MEMCUR - the name of the Mxxx in current execution resulting from action
taken by XMERR. If a search was performad then Mxxx contains the
first encountered PR@CEED or the ENDCS. If a search was not per-
formed then MEMCUR is unchanged from the input value.

3.5-54

EXECUTIVE MANAGEMENT SYSTEM

3. Control Structures

MDBT - if a search was not performed then all MDB entries are unchanged.
1f a search was performed, then the value of the contents of the
MCUR position in the MDE of each Mxxx member involved in the
search process has changed. This value in the MDB corresponding
to MEMCUR is the position of the CS record which immediately pre-
ceeds the found PR@PCEED or ENDCS CS record. (This is necessary
for the CS Processing Phase to resume with the PRPCEED or ENDCS.)
This value in the MDB corresponding to any other Mxxx involved
in the search is the position of the last €S record in Mxxx which
is now in completed execution.

Functional Description: The Error Processing Phase determines the action to be taken

whenever a non-fatal error occurs during the processing of a CS. The error could have
been encountered during the CS Processing Phase or during the F.M. Processing Phase. If
it occurred in the former phase, then the CS was directly responsible for the error. If
it occurred in the latter phase, which is always the result of an EXECUTE CS being pro-
cessed, then the error was not directly caused by the EXECUTE ¢S but instead by the F.M.
which was executed. In both cases, however, the CS last processed by the CS Processing
Phase is considered by XMERR to be in error and the CS image is printed with an error

message.

Further action to be taken is determined by the system parameter JegN, If JC@N is
set to .TRUE. on entry, then no further action is taken. Subsequently, when the CS
Processing Phase is resumed by the driver XM, processing will continue with the CS im-
mediately following the CS in error. I1f JC@N is set to _FALSE. on entry, then a search is
performed to locate either the first PRPCEED CS after the CS in error or if no PRPCEED
is found, then the ENDCS CS. Subsequently, when the CS Processing Phase is resumed by the

driver XM, processing will resume with the PRPCEED or ENDCS.

The search for the PROCEED begins with the CS following the CS in error. The search
continues sequentially forward through the current CS set in execution. If during the
search a CALL CS is encountered, it is not processed and the Secondary CS Stream specified
is not brought into the search process. The CALL CS is skipped as any other ¢s. If the
current CS Set is a Secondary CS Set and it is exhausted without a PR@PCEED CS, then upon
encountering the RETURN CS, the Mxxx containing the Secondary CS Set is closed and pro-

cessing returns to the ¢S immediately following the CALL CS in the calling member. This

3.5-55

EXECUTIVE MODULES

procedure continues until a PR@CEED CS is detected or until processing returns to the
Primary CS Set and an ENDCS CS is detected. On exit from XMERR, all Mxxx members used in

the search are closed.

Logical Description: Immediately upon entry XMERR calls the XCSPM module to open the

currently executing Mxxx member, allocate local core to receive a control statement

record from the Mxxx member, and position the Mxxx member to the next CS record.

Upon return from XCSPM, the Mxxx member is positioned to the CS in error via the
MMSKIP service module. The CS in error is gotten from the current Mxxx via the MMGETR
service module. The CS record is echoed with an appropriate message telling the user that
the current CS resulted in a system error and execution will continue with the next CS

record or with the next PR@ACEED CS, depending on the system parameter JC@N.

If the system parameter JC@N is set to .TRUE., indicating tﬁat execution should
continue with the CS record following the CS in error, then the system parameter MEMCUR is
unchanged and the number of the CS record in current execution on MEMCUR (the CS in
error) is also unchanged. This insures that the CS record to be executed next by the
Control Statement Processing Phase (XCSP) will be the CS immediately following the CS in

error.,

If the system parameter JCPN is set to .FALSE., this indicates that execution should
not continue with the CS following the CS in error, but instead should continue with the
next PRPCEED CS. If a PROCEED CS is not detected, then execution should continue with the

ENDCS CS.

In the case that JC@N is .FALSE., XMERR sequentially reads CS records from MEMCUR,
bringing each into Local Dynamic Storage via MMGETR, until a PRPCEED or ENDCS CS is de-
tected. In the event that a RETURN CS is detected, the current Mxxx is closed, system
parameter MEMCUR is defined as the calling Mxxx, the calling Mxxx is opened, and the
search continues in the calling member. Detection of a CALL CS in the current CS Set does

not alter the course of the search. The CALL CS is skipped and the search continues with

3.5-56

EXECUTIVE MANAGEMENT SYSTEM

the CS immediately following the CALL. This procedure is iterated, and the number of the

¢S pecord in current execution on MEMCUR is incremented, until a PR@CEED or ENDCS CS is
detected.

On exit from XMERR, the name of the current Mxxx member is defined by the system
parameter MEMCUR, and the number of the CS record in current execution for the MEMCUR Mxxx

has been defined dependent on the value of the system parameter JCON.

Error Philosophy: The XMERR module aborts only if an error is detected by MMGETR

while trying to get the next CS record from the current Mxxx member.

3.5-57

EXECUTIVE MODULES

3.5.4.6 Secondary Edit Phase (XCA)

Purpose: The Secondary Edit Phase module (XCA) is called by the Control Statement
Processing Phase (XCSP) to process a CALL control statement. If this is the first execu-
tion of the CALL CS, XCA builds an Mxxx member containing CS records that correspond to
the control statements in the Secondary Input Stream. If the Mxxx member is built success-
fully, or if the Mxxx has been previously executed, the Secondary Edit Phase provides the
environment required for the CS Processing Phase to resume execution with the first con-

trol statement on the new Mxxx member.

Input: Primary Input to the Secondary Edit Phase is the Secondary Input Stream
residing in card image (CI) format on the member specified as DU(DM) on the CALL CS.
Pertinent input is described below. Other input required for processing but not necessary
for understanding, is not included.

1. Data Base Structures

DU(DM) - the data member specified by the DU(DM) on the CALL CS contains
the Secondary Input Stream in CI format.

2. Common Block Variables
/XCs/
MEMCUR -~ the name of the Mxxx member in current execution on entry to XCA

is defined by MEMCUR. MEMCUR names the Mxxx member where the
CALL CS resides.

/XCVT/

NERR - the executive system logical error indicator NERR is always .FALSE.
on entry to XCA, indicating that no errors have been detected in
processing.

3. Control Structures

MDBT - the Member Description Block Table resides in GDS and is a system
table type 1. The MDB entry for the Mxxx member being called into
execution exists in the MDBT in initialized or executable format.
The values in an initialized MDB indicate that the Mxxx does not
exist, whereas the values in an executable MDB indicate that the
Mxxx has been constructed,

Output:
1. Data Base Structures
Mxxx - the first time a (+LL CS is executed, the Secondary Edit Phase

validates and builds the Mxxx member being called into execution.
Mxxx contains a variable length control statement record for each

3.5-58

EXECUTIVE MANAGEMENT SYSTEM

complete CS edited in the Secondary Input Stream and a Label Record
that provides a cross-reference to each labeled CS on Mxxx. The
member is in a format recognized by the CS Processing Phase. If

an error is detected in the Secondary Input Stream, writing to the
Mxxx member is suppressed but editing continues until the Secondary

Input Stream has been exhausted.

2. Common Block Variables
/XCS/
MEMCUR - the name of the current Mxxx type member in execution. If the

CALL CS has been processed without error, MEMCUR indicates the Mxxx
to which control has been transferred and the Mxxx in execution on
entry has been closed. But if errors have been detected in process-

ing the CALL CS, MEMCUR is unchanged from its entry value.

/XCVT/
NERR - the executive system logical error indicator. If an error is de-
tected in processing the CALL CS, NERR is set to .TRUE. on exit.
3. Control Structures
MDBT - +the first time a CALL CS is executed and an Mxxx member is built,

a Member Description Block entry (MDB) is put into executable format

for the Mxxx built.

Punctional Description: The XCA module performs all operations necessary to process

a Secondary Input Stream as a result of a CALL CS. If it is the first execution

of the

CALL CS, then an Mxxx type member must be built from the card images in the Secondary

Input Stream. The Secondary Input Stream resides on the member specified by the
field on the CALL CS image. The name of the Mxxx member to be built is found in

CS record.

The Mxxx member is built in a single sequential pass on the Secondary Input
As each CS in the Secondary Imput Stream is processed, substitutions are made in

image from optional replacement names specified on the CALL CS.

DU(DM)

the CALL

Stream.

the CS

Once substitutions have been made, the new ¢S image is used to build an unformatted,

variable length CS record. CS records for the Secondary CS Set are edited and built in

the same manner used to build CS records for the Primary CS Set.

Certain CS names, or forms of a CS, that were valid in the Primary Input Stream are

not valid in the Secondary Input Stream. The S@URCE=* form of the UPDATE and TABLE

3.5-59

EXECUTIVE MODULES

control statements are not valid to the Secondary CS Set. Neither is the DATA C8 valid to

the Secondary CS Set.

A CALL CS is processed the same in the Primary Input Stream and the Secondary Input
Stream. An Mxxx member name is assigned and an MDB entry initialized each time a CALL CS

is encountered.

If an end-of-member condition is detected, a RETURN CS is simulated for internal

control. Detection of the RETURN CS indicates the end of the Secondary Input Stream.
As the Mxxx member is built, the MDB for the Mxxx is put into executable format.

I1f the Mxxx member is built successfully, or if the Mxxx was built and executed
previously (due to a previous processing of the CALL CS), then XCA transfers control to
the new Mxxx so that the CS Processing Phase (XCSP) will resume execution with the first
CS record on the new Mxxx. In order to provide such an environment, the following steps

must be done:

1. Close the Mxxx member that was in execution on entry to XCA.
2. Open the new Mxxx to read and position to the first CS record on the member.

3. Free LDS blocks for the Mxxx member that has been closed and re-allocate LDS
blocks as required for processing the new Mxxx member.

L, The MEMCUR parameter that defines Mxxx member in current execution is set to
name of new Mxxx.

If the Mxxx member was not built successfully, then the entry environment is un-
changed. Control is not transferred to the new Mxxx. Before exit, an error indicator is

set to inform the caller that an error was detected in the Secondary Edit Phase.

Logical Description: Immediately upon entry to the XCA module, the XCAI module is

called to open the member containing the Secondary Input Stream and the Mxxx member to be
built. In addition, XCAI allocates expandable LDS blocks necessary for building the Mxxx
Label Reference Table (LRT) and Label Record Table (LREC), and fixed length LDS blocks for

building the Substitution Table (LSUB) and the new CS Image Block (NCSIB).

3.5-60

EXECUTIVE MANACGEMENT SYSTEM

The XCA module then calls XCABST to build the Substitution Table from the replacement
values, if present, specified on the CALL CS. If at least ome replacement set is speci-
fied on the CALL CS, XCABST cracks the CALL CS image without converting fields (XCRWC).
Replacement sets appear in the form oldvalue = newvalue on the CALL CS. To build the
Substitution Table, the = fields are stripped out and only the old- and newvalue fields
are retained. Upon completion, the Substitution Table contains the type code and corre-
sponding oldvalue field and the type code and corresponding newvalue field for each

replacement set.

Once the Substitution Table is complete, the following process is iterated until the

Secondary Input Stream has been exhausted (a RETURN CS detected or simulated):

The XCANCS module is called to produce a new CS image by getting the next CS
image from the Secondary Input Stream and making field substitutions as required by
the CALL CS. TField substitutions are made according to values in the Substituticn
Table previously built on entry to XCA. Any field type may be replaced by any other
field type. The comment portion of the original CS, if present, is retained. If
the new CS image with substitution causes the comment portion to overflow a card
image, then the comment portion is truncated accordingly. If the CS image without
comment exceeds the maximum allowable card images, then an end-of-data character is

simulated and the CS is truncated.

1f an end-of-member condition is detected before a RETURN CS is detected, a
RETURN CS is simulated for internal control. If an end-of-member condition is

detected on an incomplete CS, then that CS is replaced by a RETURN CS.

If the current CS is found to be in error the system parameter JECH® is
automatically turned on so that subsequent images will be echoed. A CS is considered
in error if the original CS image exceeds maximum allowable images or if the new

€S image without comment portion exceeds maximum allowable images.

When the new CS image is complete, the XCAMXX module is called to build and
validate a control statement record valid for a Secondary CS Set. The CS record in
built in the same manner used to build control statement records for the MO0l root

member. XRT sub-modules are called to perform the following functions:

1. Update label record table for Mxxx being built (XRTBLR)
2. Update label reference table for Mxxx being built (XRTLRF)

3.5-61

EXECUTIVE MODULES

3. Perform syntax check according to format requirements for particular
CS (XRTSYN)

4. Simulate CS complete condition if CS image exceeds maximum cards per
€S with no valid CS terminator (XRTTC)

5. Get CS record into format ready to be written on new Mxxx (XRTBCS)

Comment cards (CS where first non-blank character is end-of-data character) are

included on the new Mxxx as a CS with CPNTINUE substituted as the CS name.

The XCAMXX module allocates and initializes an MDB entry in the MDBT for each
CALL CS processed. The XRT sub-module XRTCAL, is called to form the new Mxxx name
assigned to the CALL CS and initialize the MDB.

If a CS error is detected, the Mxxx member is considered to be in error. NERR

is set to .TRUE. and writing to the Mxxx member is inhibited, although editing and

building CS records continues. A CS is considered in error under any of the following

circumstances:

1. Unrecognizable field detected on CS image
2. Invalid label field (either invalid form or duplicate labels)
3. Invalid CS name
4, Invalid syntax check for CS name
5. Maximum images (MAXCC) exceeded
Once the Mxxx member has been built, the XRT sub-module XRTLSA is called to insure
that all label references on the member are satisfied. If all labels have been satisfied

and the Mxxx member is error free, then the label record is written on the Mxxx member as

the last record.

The XCACL® module is then called to perform the closing functions. XCACL@ frees the
Substitution Table (LSUB), the New CS Image Block (NCSIB), the Label Record Block (LREC),
and the Label Reference Table (LRT) in Local Dynamic Storage. XCACL@ also closes the

Secondary Input Stream member and the new Mxxx member just built.

XCA then completes the MDB entry in the MDBT for the new Mxxx member by inserting in
the MDB the name of the Mxxx that called the new Mxxx member just built. The calling

member is the Mxxx member that was in current execution on entry to XCA.

If the new Mxxx member was successfully built, or if the Mxxx member was previously

executed then the XCATRA module is called to transfer execution control to the new Mxxx.

3.5-62

EXECUTIVE MANAGEMENT SYSTEM

XCATRA first closes the Mxxx member that was in current execution on entry to XCA.
Then Local Dynamic Storage blocks are freed and re-allocated according to the requirements
for the new Mxxx. The new Mxxx is opened to read and the label record is validated and
moved to the newly allocated LDS Label Record Table. Then the new Mxxx is positioned to

read the first CS record.

1f no errors have been detected on exit from XCA, then XCATRA has set up the appro-
priate environment such that XCSP will resume execution with the first CS record on the

new Mxxx member.

Error Philosophy: The Secondary Edit Phase aborts via the XXFMSG fatal message

writer if an error is detected when opening the new Mxxx member to be written.

The Substitution Table is allocated for exact requirements of replacement values
specified on the CALL CS. An error is indicated (possibly in the replacement fields
specified on the CALL CS) if the number of words moved to the table in building does not

match allocated table length. In such a case, XCABST aborts via XXFMSG fatal message

writer.

When building a CS record for the new Mxxx member, XCAMXX aborts via XXFMSG if the CS
record block overflows because the allocated length was not the maximum required or if an
unexpected Member Manager return status is detected while reading the Secondary Input

Stream Member.

‘Several other errors are not immediately fatal but do result in ultimate termination
of processing at the end of the Secondary Edit Phase. If the Secondary Input Stream
member does not exist or is mot in card image (CI) format, logical error indicator NERR is
set and a message is printed. Also, the error indicator is set and message printed if LDS

is insufficient to allocate all of the tables required for processing.

Edit errors detected in the Secondary Edit Phase cause writing on the new Mxxx member
to be suspended. However, editing and building CS records continues until the Secondary

Input Stream has been completely processed. Error messages are printed before the corre-

3.5-63

EXECUTIVE MODULES

sponding CS record is echoed. If a CS error is detected, the system parameters NERR and

JECHP are set to .TRUE. and the current CS is echoed.

A CS image that exceeds the maximum card images (MAXCC) per CS falls under the
category of edit errors above. The control statement is arbitrarily terminated at the end
of the last allowable image and processing continues as for a valid CS. An incomplete CS
detected at an end-of-member is not processed, but instead is replaced by a RETURN CS

vwhich is processed as a valid CS.

3.5-64

EXECUTIVE MANAGEMENT SYSTEM

3.5.4.7 Normal Termination Phase (XEN)

Purpose: The EM module XEN is called during the Control Statement (CS) Processing
Phase by XCSP to process the control statement ENDCS. The ENDCS indicates that the set of
control statements provided by the user as card image input to ANOFP (i.e., the Primary
Input Stream) has been completely processed and ANOPP termination is desired. The process
of terminating ANOPP upon normal completion of processing is called the Normal Termination

Phase and is controlled by XEN.

Input: The M0O1 member on unit XSUNIT, which contains the executable form of the

Primary Input Stream, is open to read.
Qutput: There is no output since ANOPP is terminated.

Functional Description: The Normal Termination Phase includes printing an informa-

tive message indicating ANOFP normal termination, closing the opened member M0O1, and

halting further execution.

Logical Description: XEN is a simple module requiring no calls to lower level

modules. The required message is printed, MOOl is closed via a MM call, and execution is

halted via the F@RTRAN ST@P command.

Error Philosophy: No error condition is encountered.

s ;‘{;_ﬁ‘_LL_‘;. LL/!

- 3.5-65

EXECUTIVE MODULES
3.5.4.8 Error Termination Phase (XXFMSG)

Purpose: The Error Termination Phase is controlled by the Executive Management
System (EM) auxiliary module XXFMSG. It is called by any EM module which detects an error

condition which inhibits further meaningful execution (i.e., a fatal error).
Termination of ANOPP will result with an informative message as to the cause.

Input: The calling module via an argument list provides the calling module name,
defines the message number to be printed, and provides additional descriptive information.
The same message number may be requested by several calling modules with varying descrip-
tive information., Four arguments are provided for descriptive information with usage

dependent upon the message. The message number range is 1-999. See Appendix C.

Qutput: Message text on ANOPP output file including specified error message and a

traceback via XEXIT.

Functional Description: XXFMSCG identifies and prints the message requested. Mes-

sages have two parts. The first part of all messages is fixed as follows:
%%% EXEC ERR@R (ERRPR NUMBER ---) #%% (CALLER ---)

The second part of all messages is unique for each message number and describes the cause

of error.

A traceback which prints module names from the calling module to the driver XM is

provided and ANOPP is then terminated.

Logical Description: Identification and message printing is performed directly by

XXFMSG. F@RTRAN WRITE statements with pre-defined FPRMATS are utilized. The General
Utilities XTRACE and XEXIT are called to perform the traceback and the ANOPP termination

respectively.

Error Philosophy: The message number is validated upon entry with no further possi-

bility of error occurrence.

3.5-66

EXECUTIVE MANAGEMENT SYSTEM

3.5.5 Auxiliary Modules

An auxiliary modules does not perform a function which is unique to a specific exe-
cutive phase or group of EM modules but instead performs a function common to many EM
modules during various executive phases. It is a general purpose module available for

usage only by other EM modules.
3.5.5.1 Fatal Error Message Writer {XXFMSG)

Purpose: The XXFMSG module is utilized to print an informative error message when-

ever a fatal error is encountered and detected by an EM module and to terminate ANOPP,

YXFMSG controls the Error Termination Phase of EM and is discussed in Section 3.5.4.8.
It is called by many EM modules during the various executive phases whenever an error

condition which inhibits further meaningful execution is detected.

For full description of this module, see Section 3.5.u4.8.
3.5.5.2 Non-Fatal Error Message Writer (XXNMSG)

Purpose: The XXNMSG module is utilized to print an informative error message when-

ever a non-fatal error is encountered and detected by an EM module.

Input: The calling module via an argument list provides the calling module name,
defines the message number to be printed, and provides additional descriptive information.
The same message number may be requested by several calling modules with varying descrip-
tive information. Four arguments are provided for descriptive information with usage

dependent upon the particular message. The message number range is 1001-1999.
Qutput: There is no output upon return to the calling module.

Functional Description: XXNMSG identifies and prints the message required. Messages

have two parts. The first part of all messages is fixed as follows:
%% EXIC ERRGR (ERR@R NUMBER ---)} %% (CALLER ---)

The second part of all messages is unique for each message number and describes the cause

of error.
3.5-67

EXECUTIVE MODULES

Logical Description: Identification and message printing is performed directly by

XXNMSG. FPRTRAN WRITE statements with pre-defined F@RMATS are utilized.

Error Philosophy: The message number is validated upon entry and the Error Termina-

tion Phase is invoked via the XXFMSG auxiliary if found to be invalid.

3.5-68

EXECUTIVE MANAGEMENT SYSTEM

3.5.6 Hierarchy Charts

A hierarchy chart is a graphical representation of the logical relationship between

modules. Figures 1-24 are the hierarchy charts for the Executive Management System (EM).

In general, only EM modules appear as a block entity in the charts and all EM modules
appear at least once. The charts are in alphabetical order with respect to module name
except for Figure 1 which is the hierarchy chart for the driver XM from which all other EM
modules, except EM auxiliary modules, derive. A& hierarchy chart for each auxiliary

module is also among the alphabetized charts.

A module which is not part of EM but is called by an M module is, in general, not
shown as a block entity but is listed at the bottom of the chart. The module may be an
ANOPP executive module which is part of the Data Base Management System (DBM), the Dynamic
Storage Management System (DSM), or the General Utilities. It also may be a subprogram
provided by one of the CDC operating system libraries. In either case, the module is
generally of a service or utility nature and may be called many times by various EM
modules. One of these service type modules may, however, be of sufficient design im-
portance to the calling EM module that it»should receive more emphasis than simply being
listed. In these cases, the non-EM module is represented as a block entity for logical

emphasis and is noted as such on the chart.

Symbols and heads used in the hierarchy charts are given below:

NAME NAME - module name
purpose purpose - brief description

indicates lower module is called by the
higher module

% in upper right corner of module block
indicates module is expanded as a
separate hierarchy

. =~ 1&(}1 §
OF POOR QUAlgT% 3.5-69

EXECUTIVE MODULES

"ANOPP Modules Called: a list of DBM, DSM, and General Utility
Modules called by the modules in this
figure

CDC System Library a list of subprograms called by the

Subprograms Called: modules in this figure and which are not

part of ANOPP but are provided by CDC N@S
operating system libraries

3.5-70

EXECUTIVE MANAGEMENT SYSTEM

Jaey) AyoaeasTH WX

STNpPOR
T Tea®T XUT1
ANITX

3k
i

*1 8an3tJ

suoN :PITTBD S®TNPOW ddONV

sseyqd
ssao0oad W'
WIX

sz
1

JOITUOR
JATLOO3X3
WX

3.5-71

EXECUTIVE MODULES

jaeyp LyodaeasTH IVX

sweN oTTJ
anbrun
NAJLOX

an ut
Aayug

NaeLox

*Z 2andTd

199 :parTe) swexBoadqng AaeaqyT waisAs JQd

TITIZX “NTIELX CAJELX *GJITONK
CHITINN CHUTHR XWIOWW *IJIHSI ‘4Pl

{peTTED SOTNPOW ddONV

SO
HOVLLY
ssavoud

1vX

3.5-72

EXECUTIVE MANAGEMENT SYSTEM

3aeyD AYOIRJISTH SAX

93

(patTe) sweadoxdqng Aaeaqi weishs Jdd

sweN 7714
3leaaus
NITLOX o “17132X ¢ OSHNXX
¢ OSHIXX * NINOX NIELX
‘dIelX ‘AJELX ¢ TPLSX
“MdX CANITdX ‘gy1dx
¢39vdXx bt 1) 4 ¢ JALAMN
UWHORA ‘gITOHN ¢ gITINH
an Axiug an © AIIWH ¢ LITHSI “up1
pPTINg *1TuI * oI “31val “XWSa
AWELOX nagLox “4WSd ¢ INSa * OHSA
_ 1peTTR) SATNPOH JdJONV

atun SO dd@NV punog

Bl ¥iesa) Ss§900ad 3SATJ SSedodd &w&QD 13§

NaLdx dSsdx 13dSgX

naa andur Sao a8eq 9131l
*3Tul ss8d0ad *ITUI *3TUur
HEasgx NISEX WSgsgx dLsdaxX
[1]
aseyq
UOT1BeZTTETITUT

SgX

3.5-73

EXECUTIVE MODULES

jaey) Ayoaeastq yIX ‘H 9an3d1g

"h'6°€ UOTINAS

uT Ayoaeasty AITTTIN TRI2U9Y B se papuedxe sT 3ng sTseydwe Jo3 A3TIUS 3O0Tq B Se papnour ST DJMYOX OTNPOR * "931O0N

OSHNXX “OSWIXX ‘dINITdX “DavIdX ‘gVIdX CIMINNX CIIANNX

WIAX DIWIX ‘TAPWX OMMOX ‘WANWIW “JALAMN “MINIHW *NS@OJRWK

‘ONI@RN ‘aNdOWH “MIIOWW © SPTOWK ‘101 ‘an1 “Onsa ¢ INsa
1paTTRD SOTNPOW JJONV

Leaay Axyuz 14ns
S300Tg 3utrais ojur 03} InTep
3d10) aAadsdY PT?T4 Ind - PTO Uo3IER
1ISOX dSNVOX LSHYOX
T9qeT Butsseooad aTqeL wwmwaum
23BPTTRA IO XxXH LOMWX PTINg Mo : mm
: dn 318g JMNVOX N PTIng
ISITLIX WdSOX SNVOX
sTeqeT SO on Todaes SATE SQT 9921 kxxi uo puaoosy sfeul SO 9TqRL"1TISANS ‘qetaep pue
A3st3ES awmmcmpao 3 XXX 350T) SO PTTNE a%eN 199 pTINg saT *3TuI
VSTLYX VMLYOX @I0VoX « XXWYOX SONVOX LS9vOX IVOX

1Tpd
Aaepuoosag
voX

3.5-7T4

3aey) AYodeJsTH XXWYOX G @am3Td

/
ISHNXX OSHIXX IVEILX “INITAX “NMdX ¢ IAPHX “¥OX
CIALAMN “MLNJKR *101 “XWSa *OWSa ¢ IWsa

EXECUTIVE MANAGEMENT SYSTEM

1peTTR) SOTINPOW Jdd@PNV

sueu g9 QueN T2Q®1 (o(] aagp
81BpPTITRA XXX} WIOJ 31EpTTEA 1Xau 399 1X8U 199
SOALYX NWYLYX JSTLYX gapL¥X gaaLdx
SPTo1d
paoosy S5 TIVD sousg oy 20uDaI0 19y - zruBoopauy
SO PTINg S8200dd Ta2qe] PIINd 1oqeT pPIIng wcﬂhm
SodLdX TVoLdX dTELEX JI1L9X Q<Whmx
L [| [[
aouenbag ’
$03yD xelulks anuUTIVOD aag
WIogasd s1BUTWIS] IxaN 189
o JASLUX 014X CUTAR
XXX
uo paooay
SO PTITNd
XXHYOX

i
o~
i
w

.
(324

3aeyd AyoaeasTH 40X ‘9 eanBrg

EXECUTIVE MODULES

OSHNXX ‘OSWIXX “MTelX “AJEIX
‘INITAX “dvidX “HOLIIX °TISSOX ‘dALAMN *QUdORW
“YLIOWK ‘HJIOHK “9JTINN CYYTHW XWUOWW “WONWIN
* SOTORR ¢ YWSa ¢ IRSA “9Wsa ‘ST “‘gWsa
1pRTTED SOTNPOH Jd4PNV
(878"¢ uor1oeg d88S)

0074 sYooTqg PT®T4) S0 o) sa3dew]
8109 810D Teqen] aLvadn 31n0axa dLVIED)
BAIBSAY ‘ 9AAISIY ssaoouy - S$S800ug $sad0ag sssdoagd do1

TISOX TISOX 1SS0X dnx X3x 10X 990X

L 1 I [

Butssevoayg gurssadoayg S0 S0) SO o)
aog J0 XXXR MR aQvgriNg 374Vl SAS13S 39and
xxxXjj dn 395 dn ass $89004g S$S900ad ssadoag ssadoag s§8900ag

RASOX W3SOX #ox s NAX a AR SSX ndx

_ Rl i _] _

30) fS}e] S0 S0 i)
N3NLIY q33ogdd Wvavd aveT I SOaN3
ssadoad Ssadouad Ssadodd $83004g s$s900ug s3%04g

JIX UdX 5 vdx w2 QX P dIx N3X

L T) T T T
SO) SO) S0 D
Hovlad dgda ANNILNGD TIVO HOVLILY JAIHONVY
§89004d S88004d SS2004X4 Ssadouag Ssa@douad §S9004d
Lax " Jax @3X e VX M 1vX gvx
aseyd
Zuissaooad
S0
dsox

3.5-76

EXECUTIVE MANAGEMENT SYSTEM

1aey) AyouaeddTH LIX

11up B3IBQ J0J
aW pTINg
aAgLIX

+L @an3dti

TITIZX *NIEIX AJELX “QWHORR ¢ GITOWH
‘GITIWA CMMIHRR “LJIIHSI ‘401 ¢ XHSd

1paTTED SBTNPOH ddONV

sweyN 3TTJ
anbrun waog
NJITLOX

Aazug
an ptIng
NnagLax

[

STTd "3ITUl

pue Aaaudj
an pIIng
NdLIX

S3
JLVIED
s89003g

10X

3.5-77

EXECUTIVE MODULES

1aey) AyoaedsTH ¥(gX ‘8 @4and1g

WNId@ “0SdTId

" :parTe) weadoadqng Aaeaqr] weisds 20D

AJTIX “I9¥ndX “dINITdX

1paTTe) SRTNPOW JdONV

sy doug
sseo0ayg

4ax

3,5-78,

EXECUTIVE MANAGEMENT SYSTEM

1aey) AyoJdeJIdTH XIX

JoqunN Wd
sA3TaIY

TX3X

*6 2andT i

OSHNXX “OSHIXX ¢ XWSa
:paTTR) SOTNPOH ddONV

LNV
pITNg
VX3X

SO
J1N03X3
ssao0dd

X3X

. 3,5-79

EXECUTIVE MODULES

3aey) AYogRISTH WIX 0T 94ndtTg

OSKNXX “OSHIXX “INITIX
‘EYIdX “ALJWL - COWPAWW “ISTORKW
‘ SWSa “dNHSA *9RSa ¢ IWsa

‘peTTeD SSTNPOH J4dONV

"W'd 2933y
aTqel 207D
WLWIX

‘W' J9IY
J2qWap 8soT)
HRRIX

‘R J831V
dnuesT) WSQ
WSAHJIX

S3TJIUT 0I97 3TNpoy
OL LNV “3Tuf T 12497 Ui
LNVRJIX # JNIIX

2TnpoR-1oung
23no9axd/peo]
WiX

3.5-80

EXECUTIVE MANAGEMENT SYSTEM

PT°Td
T3qe]
ssevoag
TSSOX

jaey) AyoaedaesTH JIX CTIT 8andtg
s3uTais sSaaquny sTaqumy
JaByY) oMl QY OML *Sty OML
aaeduo) aaedwo) aaedwo)
S20SX (2 101i0) ¢ S¥OSOX

¢ DISVX

¢ OSHIXX
¢ NSPJHR

1poTTeD SITNPOW JddONV

saeds3ul J0

Teo180T oM]
aaeduo)
TIOSOX

antTep 1dn
J0 1SN 39D
LSSOX

SO dI
ssadoagd

JIX

3.5-81

EXECUTIVE MODULES

4149

‘10d

¢DS3ITId “WISPTO

Jaey) AYoaeadTH JIX

:peTTR) swealoadqng Adeaqr weisAs 2Q0

np putrj
Nq3aIx

up putrg
HAJATIX

*ZT aandtg

CAJTLX “JLy@SX
‘QHHORW “dNASKK
¢ ONPANK “opII

* XWSd ‘dHsa

up peof]
RATATX

SO 21epITRA
SOAQTX

|

TIIIZX AJELX
CPIIATX * VEARR
CAWIAR “ OHPIWW
‘HOLAJI “aNvI

¢OSHa ¢ InNsa

:pPBTTRD SOTNPOH ddONV

np s3ied8d)
/@3epTTeA
LOAQTX

UOTIBUTWAD]
aNIQTIX

np peor
N41a11X

wp peoT]
WOTATX

SO de'a)
SJ20'TX

np ITe 403
°Tqel pItng
TIVATX

®ZTTETITUL
NOEATX

S2
avet
ssaooad

aIx

.3.5-82

EXECUTIVE MANAGEMENT SYSTEM

3aey) AYDaRJISTH WYIATX

JBTPUBH aI0dag

SJ aQvet
¥IIATX

[y

‘gl 2an3T3

TOVILX “INITdX HOLIIX “LIXIX
:paTTRD SITNPOH ddONV

o
[+ o]
1
w2
.
[s2]

EXECUTIVE MODULES

3aey) AYoaeasTH MNITIX T @andrj
OSRIXX
{PaTTR) SaINPOR JdONV
u, | T
W' d .. "W d s8] "W "4 IS8l ‘W4 isal "R'J
patre3isur paTTeasur SHA HHd EHI .
188l "H'd 1S9L W-d aseyq aseyq aseyd aseyq
ZHi TR Bsedodd Jaoaaj *ssadoad SO ITpI utad *TeriTur

o HANX w dSOX e X s SEX

9TNPOW T

Ta49T UL

ANITX

3.5-84

EXECUTIVE MANAGEMENT SYSTEM

1aey) AyoaedadaTH YHIWX

g1 2andTy

OSWIXX

CINSHH® NSBIWH
CHANWAW “¥WSd

s30T
8J0)
aAJes9Yy
TISOX
Burssadoad syo0Tg
J03 3109
xxxi dn 398 aagesay
WdSOX 1ISIX
I qUISH Burssedody
ButTTR) 103
03 uanisay xxxX[dn 3183
X WdSOX

aseyd

Burssadoad

aoaag
WIIHX

CTYPLSX “ANITAX ‘gvidx
CQIdPWH CUIIOWW © S@TOWW
‘IWSa ‘onsa ¢ gusda

1pRTTED SSTNPOR d4@NV

3.5-85

. EXECUTIVE MODULES

1aey) AYSaRAdTH YdX

‘9T @an3dT]

OSHNXX
¢ DISYX

CISHIXX
¢ dALAMN

‘POTTeD SITNPOW d4ONV

‘drlndx
¢ XHSa

soTdutrs Teoy seTqnoq Te9y sadds3zul
om] uo -dp om] uo *do om] uo -dp snTeA Ldn 1dn pue Isn
OTRageBly og oTRAqeBTY of oTRIqaBTY oQ X0 1S 3199 puedxy
SYSOX qiSOX LNISOX LSS0X GLAVIX
SO HW¥vd
ssavdold

vdXx

.5-86

‘

EXECUTIVE MANAGEMENT SYSTEM

1dey) AyoaedaTy L ‘L] @andr3
Ip3 :peTTe) swexdoadqng Aaeaqrl woisis X0
OSHNXX ~ ‘OSHAXX ‘INI1dX ‘gv1dX
*3DvdX “¥OX ‘dALAMN MINAWW “SMJUWR “S@TOW
*XWSd “Y¥HSa “INSG ‘OWSQ ‘N fEsq
:POTTR) SITNPAH ddENV
Teqe] T9qel BWeN SO aag aag ‘
91EpPTTEA 21BpTTRA 931RpPITEA 1X3u 139 IXau 389
ISTLYX ISTLEX , SOALYX 9agLIX ga3L¥X
| b N
| seIqel pue aouanbag | g5 Teroeds NECRl) seTqeL
- soTqetJdep SRUTIUO0D : Xe3UAg
: ssanoad Y23BaOS
F 9zZTTeTaITUl djeUuTWJIS] waojaagd aseaTay
! 11¥X oLLAX ¥ SSoLUX ¥ NASLYX SYLIX
|
SpIoT4d S9oUsI9 JOY
paooay sT1aqe] paooay +z tuSodeduq
T9qeT pTIng £3st13ES SO PIInNg 1UTId 12qeT pTTNE
dTdLIX VSTLEX SOdLAX avdldx JITLAIX
ATPd
Aaewtad

X

3.5-87

ORJ,

L py
Q,

ZAQQ

EXECUTIVE MODULES

3aey) AYoaeasTH SSOL¥X 81 admirj

OSHNXX ‘9SWIXX

* SPTONN

“MANONX
¢ dALAMN
*101

CIVILX
* KNARKH
*XHSa

‘POTTRD SOTNPOH ddONV

XXN) /XXX
91BOOTTY
OWVLIX

SO TT®D
S$S900ag

TYoLIX

“MdX ‘HOldJX
‘ULOdWN “ AMdBRK
*QONJ ¥qNd
93epITBA 83epITRA
ANJLAX ANALYX
weaals indur aag 4ag weaals ndug XXX/ XXX
ssad%0ag IXaN 3199 I®BN 3199 ssadouy 231e00TTY
NIJI¥X 4a@Lux gagrux NIdLlix ARVLIX
SO eieq stqeL/?3epdn
S88004d Ssadodag
Lvaiyx nix
§O Teroads
ssadoad

SSOL¥X

3.5-88

|
|

EXECUTIVE MANAGEMENT SYSTEM

T
'

3aeYD AYdJRJIOTH NASLYX 61 2an3ri
@@ xo3 4qg Jo3
HOYVis HOYVIS
OSHNXX ‘OSHIXX ‘dAIAMN uasLax d3SLuX
1peTTR) SOTNPOR JJONV
4ag S0 s2 S0
N8N 189 SASL13S 3LNo3ax3 N3NL3Y
qA@L¥X SSSLUX X3SLIX TYSIAX
SO _ b $0 SO =h) s
3Lvadn av@ING KN AN 39404 a330¢4d WVIYd
dnsrax TNSLAX Y1S1dX NdSLIX - 4dSLEX ¥dSL¥X -
S2 $0 S0 S0 S0 el
a1 avet pLPO SOaN3 HOVLid deda
JISL¥X QIS1¥X @9S1dX NISLYX Laslux YASLAX
|
1 w ,
$O $O ST SO S 2 m $9
vivd 31v3do SNHILNED TIve . LD HovLly | FATHOWY !
vasiux JOSLNX J 0S54X FOSLuY P LYSLEX | 9VSINX xw
1 1
|

|

T
|
i

|
s
i
'

T
|
i

:
T
t
i

Nueyd
NRLULG

wICIes]

NASIHX
.

| S

3.5-89

EXECUTIVE MODULES

1aey) AyoaeasTH giX

*0Z 2andTj

40X WIINL ‘JALAMN “dAIWMN
¢ QUdPHN ‘YLIOWW “SPTOWW ‘ONSa * IWSa
{paTTR) SOTNPOH JdONV
Aeaay ssnTeA Aeaay sanfTeaA Aeaay d434 Aeaay WANI Aeaay WANI Aeaay gJdd
SAOR xeluig 2A0N 3AOK xejulyg xejulsg
VAWALX YASELX YAWELX VARELX VASELX VYASHLX
Aeaay ssntep Leaay 43Q Aeaay WANI paed WANI paed d3d pae) INI
pIINd pIINg pTIng xeudg xeludg xejuds
YAJALX AQVELX AIVELX AISELX AQSELX INSELX
(L°h°9°¢ UOTLO3S 38S)

Jussaad

aug adAL spae) aTqel paey ixeN

2T7qel pTTng 1TV @231epITeA ssad0ud

% TATAWL AVASLX ONdELX

L]
aug adAl
a?1qeL PIINg
1a181X
SO ITdVlL
SsSa00ad

dLX

3.5-90

EXECUTIVE MANAGEMENT SYSTEM

jaey) Ayogedaty NOX TZ °an3Tg
dind ‘INd ‘WNIdP
€119 f0SATIA ‘ITIIANT “WISPTO
200
YAJELX ‘AJTLX “dWadlx “JLd@sX *ANSKHK
COWIWH ‘ONPINK “OWPQWH “XWMOWW 0811
“HOLAJII *XWSa * DHsa ‘9Hsd ¢ INSd
1PITTRD S9TNPOH JdJONV
NJT AT p:(eRl HOT J1s ol Surssadoad
21BPTITEA piIng pTInNg prIng Jaquop £do) UOTIBUTWII],
NOENNX TIVNNX SOONNK HOTNNX AJONNX NANNX
S0
GYQIND
Sht=Teloh £
NOX

3.5-91

EXECUTIVE MODULES

1aey) AYOoJeadTH ¥JYINNX "Z¢ 2JandTrjg

IOVILX “ANITIX ‘HOLAIX “LIX3X
:paTTR) SOTNPON JdJONV

JaTpueH
J0aaq
SO Av@INQN
AINNX

3.5-92

EXECUTIVE MANAGEMENT SYSTEM

1aey) AYodraaTH 9SHIXX €T 2anBTJ

adessoy
Teied
OSWIXX

ANITdX

“HOL3JX

fLIXIX ‘INTVAY
:peTTeD S3TNPON JJONV

3.5-93

EXECUTIVE MODULES

Jaey) AYOoJedaTH OSHNXX

agdesssjy
Teilej~uoN
OSHNXX

*Hg 2an8Ti

OSHJIXX

¢INITdX ‘HOLIIX
:pATTRD SITNPO JJONV

3.5-94

EXECUTIVE MODULES
3.6 ANOPP DATA BASE MANAGEMENT
3.6.1 Overview

The ANOPP Data Base Manager (DBM) provides ANOPP executive and functional modules
with a machine independent method of storing and retrieving data on sequential and direct

access storage devices. The following features are provided:

1. Creation of new data units on direct access storage devices.
2. Accessing of existing data units on direct access storage devices.
3. Multi-data unit sequential library files for offline storage and retrieval

of data units,

4. Direct and sequential access of data members.
5. Fixed format, variable format, and unformatted record types.
6. Full record, partial record, and sequential element within record reading

and writing of data members.

The ANOPP DBM provides a hierarchial data structure having direct (based on the
relative record position) and sequential accessing of logical records. These data re-

lationships are visualized in Figure 1.

The highest level of the hierarchy is termed the "data base", which is defined as the
universe of data for a particular ANOPP run. The universe is composed of named "data
units" and encompasses all units referenced, even though units may be loaded, attached,

created, and detached at various times during an ANOPP run.

The "data unit" is the next level of the hierarchy. It is the highest level that may
be directly referenced through ANOPP DBM control statements and subroutine calls. A Data
Unit is physically stored on direct access storage devices and is comprised of one or more

named "data members". A data unit name must be unique within a particular segment of an

ANOPP run.

Each "data member" is uniquely named within a data unit and is comprised of a set of
logically related and organized recordé. Fach member contains a format specification

which defines the type and structure of the records.

3.6-1

EXECUTIVE MODULES

2Jn3ionalg eieq TeYOSJIRJSTH HAd

drysuotrieray Te0TSAYg —l._I_
| t

drysuorierey 3rorTdur L — 0)
I

aIN3D3'1
SLNIWITI
A
Q40034
A
YIEWAW VIVQ
\7 wlou
JIIWINW
vivd
LINO VIVA
\
won
LINA YiVQ
1
asvd viva L

*T 8and1y

asvd Vvivd

L Z
\\\\\\A 13 oTd
9 9
(441 dje1g
S S S S Z Z
. uo 313 RTI|PTI|PTI 9T3| [PTd
h h h fh
daq) aT3 9T3{|9T3||ST3
Lpog € e fe]e € €
T3 TR TIRTI 213 1°1Jd
aTqelL 4 Z 4 4 [4 4
913 213|°*13|°13 aT3 |13
deJaad 1 T 1 T T
aTqe] LRI g me_ wﬁm— 8Tq] 181
qQd023d T# €H 1C# | T# # T#
JId¥L 09y 28Y| 09Y] o9y o8y oY 09y 29Y| oY
_ | Lyl 1 1
YA frpa:m uEva ulV¥au ul¥a
HIGWIN YIIWINW JIAWIN YIGHIN YITNIN
vivd viva vivd viva viIvda
L | L |
gr:m uVu
LINN vivd LINO VIVA
| 1
||||||||||||||||||| b ———— e

3.6-2

. ANOPP DATA BASE MANAGEMENT

Four record types are supported by the ANOPP DBM; fixed format, fixed format header

with a variable number of fixed format trailers, card image, and unformatted records.

Depending on the type, records are comprised of one or more contiguous words or
elements. On formatted members the format specification defines the type and length of
individual elements (integer, real double precision, complex, character string, etc.) and
thus the length in words of records. Unformatted members have variable length records

whose lengths are defined as they are written.

3.6.2 DBM Control Statements

Several ANOPP DBM Control Statements have been defined to enable the ANOFP user to
define a data base to the ANOPP Data Base Manager and to communicate the file names used
by the external system to the DBM. In brief, the following control statements are fea-

tured:

L@AD - load data units from a sequential library;

UNL@AD - unload data units to a sequential library;

ATTACH - attach a data unit from the external system;

DETACH - detach a data unit from the internal system;

CREATE - create a new data unit;

ARCHIVE - permanently write-protect a data unit;

PURGE - detach a data unit internally and drop it from the external
system

DROP - release an external file name from the external system;

TABLE - build a table, to be accessed using Table Manager, on a data
member.

A detailed description of each control statement is provided in Section 3.5.2.

3.6.3 Member Manager

3.6.3.1 General Description

The member manager as part of the ANOPP data management system provides basic open/

RIGINA
E POoR II}AGE IS 3.6-3

EXECUTIVE MODULES

close, read/write, and position functions for module writers via calls to specific member

manager routines. These routines are:

OPEN

MM@PWD

MMPPWS

MM@PRD
PUT

MMPUTR

MMPUTW

MMPUTE
GET

MMGETR
MMGETW
MMGETE
CLOSE
MMCL@S

POSITION

MMSKIP
MMREW
MMP@SN

open member to write directly
open member to write via scratch
open member to read

write a record
write a partial record on n words
write a partial record of n elements

read a record
read a partial record of n words
read a partial record of n elements

close a member

skip n records
rewind member
position member to record n

Data members are made accessible through calls to the member manager “open" routines.

These routines establish and maintain the control structures required for maintaining

multiple members on a single unit. The following access modes are provided:

1. Open for reading which allows for random and sequential retrieval of full

and partial records;

2. Open for direct writing which enables direct storage of records to a data
-member on a unit; and

3. Open for scratch writing which provides storage of records to a data member
on a scratch unit until the member is closed.

The number of members which may be concurrently open is limited by the amount of

available Global Dynamic Storage and ~he number of allocated Data Unit Directory (DUD)

entries. Each data unit which has one or more members open requires dynamic storage for

a file table and buffer through which it interfaces with the computer operating system.

Each open member also requires an Active Member Directory entry and a Member Control Block

which are also in dynamic core. Additionally, each member opened for indirect (scratch)

write uses a DUD entry with associated file table and buffer.

3.6-4

ANOPP DATA BASE MANAGEMENT

Three Member Manager PUT subprograms are provided which enable the user to write full
and partial records to a data member that is open for direct or indirect write. Calls to

these subprograms may be intermingled as required with only three limitations:

1. MMPUTE may not be used with unformatted members.

2, MMPUTW calls which precede MMPUTE calls must write the number of words
required for MMPUTE to begin writing at the beginning of the next element.

3. MMPUTE and MMPUTW calls which immediately precede MMPUTR calls must end
the record which they were writing.

A member on a unit can be simultaneously open to read and write. The old versicu is
available for reading until the new version is completed and closed at which time all MM
internal links to the old version are destroyed. The new version being written (in
ngepatch” or "direct" mode) does not physically replace the old version but instead is
written at a different location on the unit. Therefore, in reading and writing simultane-
ously, no synchronization of PUTs and GETs is required. Any record on the old version is
available for reading regardless of which record on the new version is being written.
Since the open to write call is non-destructive, the open to read call may occur before or
after the open to write call. The open to read call on this member (MM@PRD) should have a
corresponding close call (MMCL@S) before the new version of the member is closed. If it
does not, an informative message is issued. Furthermore, the NAME argument provided to
the open to read, subsequent gets, and corresponding close calls must not have the same
core location (i.e., same variable name) as the NAME argument provided to the open to

write and subsegquent puts and corresponding close calls.
Example (where UNIT1 (MEM1) is an existing member and not open currently):

DIMENSION NAMER(3), NAMEW(3)

NAMER(1) = SHUNITL
NAMER(2) = GHMEM1
NAMEW(1) = SHUNIT1
NAMEW(2) = UHMEM]

CALL MM@PRD (NAMER)
CALL MM@PWD (NAMEW, other arguments)

CALL MMPUTR (NAMEW, other arguments)
CALL MMGETR (NAMER, other arguments)

CALL MMCLPS (NAMER)
CALL MMCL@S (NAMEW)

13.6-5

EXECUTIVE MODULES

Three Member Manager Position subprograms are available which provide rewind, forward
and reverse skip, and random record positioning. Usage of these routines requires that a

member be open for read.

The close member module (MMCL@S) should be called for all open members prior to
veturning to ANOPP Executive control. If an executive module fails to close a member, the
error will not be detected, subsequent use of that member will be inhibited, and unpre-
dictable errors in subsequent executive and functional modules may occur. If a functional
module fails to close a member, subprogram XFMMM will logically close it and issue an
informative message. However, members which were open to write (and not closed) will not
be entered or updated in the Data Member Directory for the particular data unit on which
they were written. Thus, members which did not exist prior to being opened will be
eliminated from the ANOPP universe of data and updated members will be restored to their

pre-update condition.
3.6.3.2 Subroutine Arguments

Several subroutine arguments are common to more than one member manager subroutine.

NAME - a three word array, the first 2 words specifying the unit and member
names respectively. Fach name is 1-8 alphanumeric characters beginning
with an alphabetic character. The third word is reserved for the MM and

must not be altered by the user.

FORMAT - specifies the format of the records which will be created. It is
given as a character string terminated with a $. The acceptable codes for

elements which comprise the record include:

I: integer (one word)
RS: real single precision (floating point-one word)
RD: real double precision (floating point-two words)
CS: complex single precision (floating point-two words)
L: logical (one word)
CD: complex double precision (floating point-four words)
Ai: character string of i characters which is assumed to be packed
8 characters per word, 1<i< 132,
$: format string terminator character.

3.6-6

ANOPP DATA BASE MANAGEMENT

Each element code is separated by a comma. A multiplier may optionally

precede parentheses enclosing a single element or a group of elements. The
multiplier specifies the number of times the element(s) are to be repeated.
The character * may be used as an indefinite multiplier when preceding the
last element(s) of the format. The * specifies an indefinite repeat of the

element group. There are four types of formats:

UNF@RMATTED - the records are undefined format and variable length.
A zero is coded for F@RMAT.

FIXED LENGTH FORMAT - The format does not contain the indefinite
multiplier (%). Each record will be of the same length deter-
mined¢ by the format.

VARIABLE LENGTH FORMAT - The format includes the indefinite multiplier
(%). The records are variable length depending on the number of
elements written which may or may mot include the indefinite
repeat group. However, partial repeat groups may not be written.

CARD IMAGE FORMAT - The format consists of "CI" and will be interpreted

as "10A8%"., It is, therefore, & special purpose fixed format
member.

For example:

FORMAT = 6H10 I §

specifies fixed length formatted pecords of 10 words (10 integer
elements).

FORMAT = 19HI,2 Al0, 2 (I,R8) $

specifies a fixed length formatted record of 9 words (7 elements)
as follows: integer, 10 characters (2 words), 10 characters (2
words), integer, real single precision, integer, real single pre-
cision.

FORMAT = 1SH2(I), *(I,CS) $

specifies a variable length formatted record of two integers followed
by repeating group of 2 elements (3 words) of integer and complex
single precision. The number of elements on a record may be 2, Y4,

6, B, etc., depending on the number of repeat groups actually written.

FORMAT = O
then the records will be variable length with undefined format.

FORMAT = 2HCI
then the records are fixed format card images.

3.6-7

MNR

EXECUTIVE MODULES

- specifies the maximum number of records to be output to a data member.

If MNR is zero a default value of 10,000 records is used. The MNR argument

is used by Data Member Manager in computing the size of Record Directory

blocks which are used as indices in subsequent random and sequential record

retrieval.

An attempt to write more than MNR data records to a particular

member will result in immediate termination of the ANOPP run.

STATUS - conditions, which are of interest to a user of Member Manager, are

3.6.3.3 Open Data

returned in this argument by open, get, and positioning subroutines. If

STATUS is:

0
-1

-2
-3
-4
-5

-6

conditions are normal for the operation involved,

Member Manager is currently positioned in the midst of a record
or the just executed MMGETR transferred a partial record,

End of record occurred on a partial get,

End of member was detected on the last get or position operation,

Beginning of member was detected on the last position operation,

The data unit specified in the last open member request does not
exist, and

The data member specified in the last open member request does
not exist.

Member Subroutines

3.6.3.3.1 MMPPRD - Open for Read

Purpose: MM@PRD makes an existing data member available for subsequent random and

sequential accessing of data.

Format:

Arguments:

NAME -

IHDR -

CALL MM@PRD (NAME, IHDR, STATUS)

a three word array containing the names of the data unit and member to

be opened. Upon returning, the names are unchanged and the third word

contains the integer IDX to the Member Control Block.

a two word array which on return contains, in the first wdrd, the length

of the largest data record and, in the second word, the number of data

records written on the data member.

3.6-8

ANOPP DATA BASE MANAGEMENT

STATUS - an integer less than or equal to zero is returned. If zero is returned,
the data member was opened. A negative status indicates that the data

member is not open.

. Description: The initial steps in opening a data unit are validation of the name
argument and determining if the data member is in use via Data Table Manager. The name
validation routine (MMVNM) fetches alternate names for both data unit and member, edits
them for proper form (1 to 8 character alphanumeric with leading alphabetic character),
and attempts to locate the named data unit in the Data Unit Directory (pup). 1If a DUD
entry is not found, a status of -5 is set and the open routine returms to its caller. 1f
a DUD entry is found, a routine (MMVTD) is called to determine if the data member is alco
open to Data Table Manager (DTM). If it is, ANOPP execution is terminated immediately

with an appropriate message.

If the data member is not open to DTM, subprogram MMIgMC is then called to increment
— the DUD entry's open member count and insure that the data unit is open. The data unit's
Data Member Directory (DMD) is then read into core and searched for the named data member.
If an entry for the data member is not found a -6 status is set, the open member count is
decremented and if it is zero the data unit is closed and MM@PRD returns to its caller.
When an entry is found, however, an Active Member Directory entry and a Member Control
Block are established for the data member; the maximum record length and number of user

records are retrieved from the data member's Data Member Header; and a status of zero is

returned to the user.

Error Conditions: MM@PRD prints an informative message and returns & non-2ero

status to the caller if either the unit named in the open request is not in the unit

directory or the member named is not in the member directory.

MM@PRD aborts with a message if the member is already open to read, if the member is

* an active data table, or if an attempt to expand the member control block is unsuccessful.
s ¥
Y
PV gy
.QSPJJ B&L
GO Qv 3.6-9

EXECUTIVE MODULES

3.6.3.3.2 MM@PWD - Open for Direct Write

Purpose: MM@PWD makes a data member available for subsequent sequential output

directly to its data unit.

Format: CALL MM@PWD (NAME, F@RMAT, MNR, STATUS)

Arguments:

NAME - a three word array containing the names of the data unit and member to
be opened. Upon returning, the names are unchanged and the thi—d wrid
contains the integer IDX to the Member Control Block.

FPRMAT - a Hollerith literal specifying the number and types of data elements
in each data record. Legal values are discussed in Subsection 3.6.3.2.

MNR - an integer number, greater than or equal to zefo, which specifies the
maximum number of data records that may be written to the data member.

STATUS -~ a negative or zero integer is returned indicating, if zero, that the data

member is open, or, if negative, not open.

Description: The initial steps in opening a data member for direct output are
validating the name argument and determining if the data member is in use via Data Table
Manager. The name validation routine (MMVNM) fetches alternate names for both data unit
and member, edits them for proper form (1 tc 8 character alphanumeric with leading alpha-
betic character), and attempts to locate the named data unit in the Data Unit Directory
(DUD). If a DUD entry is not found, a status of -5 is set and the open routine returns to
its caller. If a DUD entry is found, a routine (MMVTD) is called to determine if the data
member is also open to Data Table Manager (DTM). If it is, ANOPP execution is terminated
immediately with an appropriate message. If the data member is not open to DTM, the data
unit's direct write flag is checked to determine if another data member is open for direct
writing on the data unit. If the direct write flag is set, ANOPP execution is terminated
with an appropriate message. Otherwise, an entry is made in the Active Member Directory,

the data unit's direct write flag is set, a Member Control Block is built containing the

3.6-10

ANOPP DATA BASE MANAGEMENT

Data Member Header, and the open member count in the data unit's DUD entry is incremented

(via MMI@MC) thus insuring that the data unit is open.

Error Conditions: MM@PWD prints an informative message and returns a non-zero

status to the caller if the unit named in the open request is not in the unit directory.

MMPPWD aborts with a message if the data unit has been archived or is already open

for direct write.

3.6.3.3.3 MM@PWS - Open for Indirect Write

PurEose:

MM@PWS makes a data member available for sequential output to a scratch

data unit. Wher closed, the data member is copied to the data unit named in the oper.

Format:

Arguments:

NAME -

F@RMAT

MNR -

STATUS

CALL MM@PWS (NAME, F@RMAT, MNR, STATUS)

a three word array containing the names of the data unit and member to
be opened. Upon returning, the names are unchanged and the third word

contains the integer IDX to the Member Control Block.

a Hollerith literal specifying the number and types of data elements in

each data record. Legal values are discussed in Subsection 3.6.3.2.

an integer number, greater than or equal to zero, which specifies the

maximum number of data records that may be written to the data member.

a negative or zero integer is returned indicating, if zero, that the date

member is open or, if negative, not open.

Description: The initial steps in opening a data unit are validating the name argu-

ment and determining if the data member is in use via Data Table Manager. The name valide-

tion routine (MMVNM) fetches alternate names for both data unit and member, edits them for

proper form (1 to 8 alphanumeric with leading alphabetic character), and attempts to

locate the named data unit in the Data Unit Directory (DUD). If a DUD entry is not found,

a status of -5 is set and the open routine returns to its caller. If a DUD entry is

3.6-11

EXECUTIVE MODULES

found, a routine (MMVTD) is called to determine if the data member is also open to Data
Table Manager. If it is, ANOPP execution is terminaéed immediately with an appropriate
message. I1f the data member is not open to DTM,‘a scratch data unit is created, an Active
Member Directory entry is built, a Member Control Block is built containing the Data

Member Header, and the open member count is incremented to open both the actual and scratch

data units.

Error Conditions: MM@PWS prints an informative message and returns a non-zero status

to the caller if the uni* named in the open request is not in the unit directory.

MM@PWS aborts with a message if the data unit is archived.
3.6.3.4 Put Subroutines
3.6.3.4.1 MMPUTR - Put Record

Purpose: MMPUTR writes a complete record to a named data unit.

Format: CALL MMPU™R (NAME, ARRAY, NWDS)

Arguments:

NAME - a three word array which specifies a data member, opened to write, on which

the record is to be written.
ARRAY - an array containing the record to be written to the data member.
NWDS - length, greater than or equal to zero, of the record to be written.

Description: There are three initial validations performed by subprogram MMPUTR.
First, a call to subprogram MMEDNM insures that the NAME argument used in calling MMPUTR
is the same as that used to open the member and that the member is open for write. Se-
cond, the Member Control Block (MCB) is checked to determine if the previous record was
completed. If is was not, ANOPP'execution is terminated and a ﬁessage specifying the
cause is output. Third, if the previous record was completed, the NWDS argument must be

zero or positive. If NWDS is negative, ANOPP execution is terminated.

3.6-12

ANOPP DATA BASE MANAGEMENT

The next level of validation is dependent on the data member's format type. For
unformatted members, no further validation is performed. For fixed format, the NWDS
argument must equal the fixed record length from the MCB. And for variable format re-
cords, NWDS must be equal to the length of the fixed part of the record plus an integral

(or zero) number of fixed length trailers.

Records are put to the member using subprogram MMPUT which builds the Record Di-

rectory and maintains the control information in the MCB.

Error Conditions: MMPUTR aborts with a message if the NAME argument iz invalid, it

the previous record is incomplete, if the NWDS argument is negative, or if the record tc
be written does not end on a legitimate record format boundary.
3.6.3.4.2 MMPUTW - Put Partial Record Words

Purpose: MMPUTW writes a partial record of a specified number of words to a fixed

format, variable format, or unformatted data member.

Format: CALL MMPUTW (NAME, ARRAY, NWDS, E@R)

Arguments:

NAME - a three word array which specifies a data member, opened to write, on

which the partial record is to be written.

ARRAY - an array containing partial record to be written.
NWDS - number of words, greater than or equal to zero, to be written from ARRAY.
EZR - logical end-of-record flag -- _TRUE. terminates the record and .FALSE.

record is to be left open for additional partial puts.

Description: MMPUTW performs two initial validations. First, subprogram MMEDNM
insures that the NAME argument is valid for the put operation. Then the NWDS argument
must not be negative. If either of these validations fails, ANOPP is terminated and a

message describing the error is output.

Final validation of a record length is performed when the E¢R argument is true and

the data member is formatted. If the data member is fixed format the total record length

T
TR B

.- P TR
v 3 AL

3.6-13

EXECUTIVE MODULES

must equal the record length implied by the format. If variable format, the total record
length must equal the length of the fixed part of the record plus the length of an integral

(or zero) number of fixed length trailers.

Finally, subprogram MMPUT writes the partial record to the member, updates the con-

trol information in the MCB, and, when EPR is true, updates the Record Directory.

Error Conditions: MMPUTW aborts with a message if the NAME argument is invalid, if

the record length is incompatible with the format, or if the number of words argument is

negative.
3.6.3.4.3 MMPUTE - Put Partial Record Elements
Purpose: MMPUTE writes a partial record of a specified number of elements to a

formatted data member.

Format: CALL MMPUTE (NAME, ARRAY, NEL, E@R)

Arguments:

NAME - a three word array which specifies a data memher, opened to write, on

which the elements are to be written.

ARRAY - an array containing the partial record to be written.
NEL - number of elements, greater than or equal to zero, in ARRAY.
E@GR - logical end-of-record flag. .TRUE. terminates the record; .FALSE.

record is to be left open for additional partial put requests.

Description: MMPUTE validates the NAME argument using subprogram MMEDNM to insure
that the data member is open to write. It then checks the format type since elements may

not be put to an unformatted member.

Next the NEL argument is checked to insure that it is not negative; the Format
Specification Table (FST) index in the Member Control Block (MCB) is set by MMSFEI based
on the number of words already put to the current record (alsc in the MCB); and the number

of words required to put NEL elements to the data member is determined using MMGNWE., If

3.6-14

ANOPP DATA BASE MANAGEMENT

the end-of-record flag (E@R) is true, the total record length, including NEL elements, is
checked against the format and if it is not valid, a message is issued and ANOPP is
terminated. Finally, if all validations are passed, NEL elements are written to the

member via subprogram MMPUT.

Error Conditions: MMPUTE aborts with a message if the NAME argument is invalid, if

the record type is unformatted (improper use of this call), if the number of elements in
the array containing the partial record to be written is negative, if the record length is

incompatible with the format, or if the total record length exceeds the fixed format.
3.6.3.5 Get Subroutines
3.6.3.5.1 MMGETR - Get Record

Purpose: MMGETR attempts to read a complete record from a named data member.

Format: CALL MMGETR (NAME, ARRAY, MAXWDS, NWDS, STATUS)

Arguments:

NAME - a three word array which specifies a data member, opened for read, from
which the record is to be read.

ARRAY ~ an array into which the data record is to be read.

¥AYWDS - maximum number of words which may be read into ARRAY (i.e., the assumed
length of ARRAY) must be greater than zero.

NWDS - returned by MMGETR, integer number of words actually read into ARRAY. NWDS
will be less than or equal to MAXWDS.

STATUS - returned by MMGETR, integer status of the read operation:
0 - a complete record was read. NWDS is less than or equal to MAXWDS.
-1 - +the record in ARRAY was truncated due to lack of room, NWDS equals

MAXWDS (record length is greater than MAXWDS) and member is positioned
to the beginning of the next record.
-3 - the end-of-member was detected, NWDS equals zero.

; 3.6-15

» EXECUTIVE MODULES

Description: MMGETR validates the NAME argument using subprogram MMEDNM to insure
that the data member is open for reading. The MAXWDS argument is checked to insure that
it is greater than zero. The Member Control Block (MCB) is then checked to determine if
the member is positioned within a record. If it is the member is repositioned to the
beginning of the next record. Subprogram MMGET is then called to read MAXWDS words into
ARRAY. MMGET returns a status of -1 if the record length is greater than MAXWDS words, -2
if a full record was read, and -3 if the end of member was detected. MMGETR changes a -2

status to zero and returns the status to the user.

Error Conditions: MMGETR aborts with a message if the NAME argument is invalid or if

the maximum number of words which may be read into ARRAY is less than or equal to zero.
3.6.3.5.2 MMGETW - Get Partial Record - Words

Purpose: MMGETW reads a partial record of a specified number of computer words from

a datea member.

Format: CALL MMGETW (NAME, ARRAY, NWR, NWDS, STATUS)

Arguments:

NAME - @& three word array which specifies a data member, opened for read, from

which the partial record is to be read.

ARRAY - an array into which the partial record is to be read.
NWR - number of words to be read into ARRAY, must be greater than zero.
NWDS - number of words actually read into ARRAY, returned by MMGETW; NWDS will
be less than or equal to NWR.
STATUS ~ integer status of the read operation, returned by MMGETW:
0 - a partial record of NWR words was read, NWUS equals NWR;
-2 =~ a partial record of NWDS words was read ending the record, NWDS
is less than or equal to NWR;
-3 -~ end-of-member was detected on the read, NWDS equals zero.

Description: MMGETW validates the NAME argument using subprogram MMEDNM to insure

that the data member is open for reading. The NWR arguments is checked to insure that it

3.6-16

ANOPP DATA BASE MANAGEMENT

is greater than zero. NWR words are then read from the current position of the data
member by subprogram MMGET. MMGET returns a status of -1 if NWR words were read, -2 if an
end-of-record was detected, and -3 for end-of-member. A status of -1 is changed to zero

prior to returning to the user.

Error Conditions: MMGETW aborts with a message if the NAME argument is invalid or if

the number of words to be read is less than or equal to zero.
3.6.3.5.3 MMGETE -~ Get Partial Record - Elements
Purpose: MMGETE reads a partial record of a specified number of elements from a

formatted data member.

Format: CALL MMGETE (NAME, ARRAY, MAXWDS, NER, NEL, STATUS)

Acguments:
MAME -~ a three word array which specifies a data member, opened for read, from

which the partial record is to be read.

ARRAY - an array into which the partial record is to be read.
MAXWDS - maximum number of words which may be read into ARRAY (i.é., the assumed
length of ARRAY) must be greater than zero.
NER - npumnber of elements to be read into ARRAY, must be greater than zero.
NEL - pumber of elements actually read into array (returned by MMGETE), will be
greater than or equal to zero.
STATUS - integer status of the read operation, returned by MMGETE:
0 - a partial record of NER elements was read, NEL equals NER:
-1 - a partial record of NEL elements was read, NEL is less than NER;
-2 - a partial record of NEL elements was read ending the record, NEL
is less than or equal to NER;
-3 - end-of-member was detected on the read, NEL is zero.

Description: MMGETE validates the NAME argument using subprogram MMEDNM to insure
that the data member is open for reading. The length of ARRAY (MAXWDS) and number of
elements to be read (NER) are then edited for greater than zero and the format type of the
member is checked to insure that it is formatted. If an error is found, ANOPP is termin-

ated with an appropriate message. The Format Specification Table (FST) index is then set
3.6-17"

ORIGINAL PAGE TS
OF POOR QUALITY

EXECUTIVE MODULES

by subprogram MMSFEI based on the number of words previously read from the current record.
Subprogram MMGNWE is then called to obtain the number (NEL) and combined length (NWDS) of
consecutive elements, up to a maximum of NER elements, whose combined length does not
exceed MAXWDS words. NWDS words are then read from the member using subprogram MMGET.
MMGET returns the STATUS and number of words actually read (NWR). If NWR is less than
NWDS, the number of elements read (NEL) is obtained from subprogram MMGNEW. Then, if the

STATUS does not equal -2 and NEL equals NER, STATUS is set to zero.

Error Conditions: MMGETE aborts with a message if the NAME argument is invalid, the

length of the record array is not greater than zero, the number of elements tc read is not
greater than zero, the data member is unformatted (misuse of this call), or if the get of

a formatted réecord does not end on an element boundary.
3.6.3.6 Position Subroutines

Data Member Manager provides the following capabilities for positioning within a data
member that is open for reading:

1. Position to a Specified Record
2. Position to the beginning of the Current Record
3. Position to the beginning of the Data Member

u, Position forward or backward a Specified Number of Records.
3.6.3.6.1 MMPPSN - Position to a Specified Record
Purpose: MMP@SN positions a data member to the beginning of a data record specified

by its numeric sequence on the member.

Format: CALL MMPPSN (NAME, NREC, STATUS)

Arguments:

NAME - a three word array specifying the data member, opened for read, which is

to be positioned.

NREC -~ integer number specifying the record to which the data member is to be

positioned.

3.6-18

ANOPP DATA BASE MANAGEMENT

STATUS - integer status of the position operation:
0 - data member is positioned to the specified record;
-3 - data member is at the end of the member;
-4 - data member is at the beginning of the member.

Description: MMP@SN edits the NAME argument using subprogram MMEDNM to determine if
the data member is open to read. If it is not, ANOPP is terminated with an appropriate
message. The internal record position information in the Member Control Block (MDB) is
reset to the beginning of the record and the current record number (CRN) in the MCB is set
equal to the NREC argument. If NREC is greater than the number of records written to the
member, the CRN in the MCB is set to number of records written plus one. If NREC is

negalive or equal to zero, then CRN is set to one.

Error Conditions: MMP@SN aborts with a message if the NAME argument is invalid.

3,6.3.6.2 MMREW - Rewind Data Member

Purpose: MMREW positions a data member to the beginning of the first data record on

the member.
Format: CALL MMREW (NAME)

Arguments:
NAME - a three word array specifying the data member, opened for reading, which

is to be positioned.

Description: MMREW edits the NAME argument using subprogram MMEDNM to determine if
the data member is open to read. If it is not ANOPP is terminated with an appropriate

message. The intermal record position information is then set to the beginning of the

record and the current record number is set to one.

Error Conditions: MMREW aborts with a message if the NAME argument is invalid.

3.6.3.6.3 MMSKIP - Skip Records

Purpose: MMSKIP positions a data member forward or backward by a specified number of

records.

3.6-19

EXECUTIVE MODULES

Format: CALL MMSKIP (NAME, NREC, STATUS)

Arguments:
NAME - a three word array specifying the data member, opened for reading, which

is to be positioned.

NREC -~ integer number of records to be skipped:
if negative - skip backward NREC records;
if positive - skip forward NREC records;
if zero - position to the beginning of the current record.

STATUS - 1integer status of the position operation:
0 - data member is positioned to the specified record;
-3 - data member is at the end of the member;
-4 - data member is at the beginning of the member.

Description: MMSKIP edits the NAME argument using subprogram MMEDNM to insure that
the data member is open for reading. If it is not, ANOPP as terminated and an appropriate
message 1s issued. The internal record position information is set to the beginning of
the current record and NREC is added to the current record number in the Member ®ntrol
Block (MCB). If the current record number is now negative, it is set to one and the
STATUS argument is set to -4, If the current record number is greater than the number of
records available on the member, it is set to the number of available records plus one and
the STATUS argument is set to -3. This provides an end-of-member condition on a sub-

sequent read. -

Error Conditions: MMSKIP aborts with a message if the NAME argument is invalid.

3.6.3.7 MMCL@S - Close Data Member Subroutine

Purpose: MMCL@S closes a previously open data member making it unavailable for

subsequent access.

Format: CALL MMCL@S (NAME)

Arguments:

NAME - the three word array identifying the data unit and member that was used in

opening the data member.

3.6-20

ANOPP DATA BASE MANAGEMENT

Description: MMCL@S edits the NAME argument using subprogram MMEDNM. If the data
member is not open, processing is terminated. If the member was open for reading, it is
logically closed using subprogram MMCLSE. If it was open for direct write the Data Member
Directory (DMD) is updated, the Data Member Header (DMH) is written to the data unit, the
direct write flags in the Data Unit Directory (DUD) and Active Member Directory (AMD)
entries are cleared, and the member is logically closed using MMCLSE. In all cases, when
MMCLSE is called the open member count is decremented and when the open member count

equals zero the unit is logically closed.

The closing of a data member that is open for indirect write is a little more com-
plex. First, the data unit may not have another data member open for direct write or
ANOPP will be terminated. Second, the DMD and DMH must be updated and written on the
scratch data unit that was created when the data member was opened. Third, the data
member on the scratch unit is opened for read so it can be copied, using Data Member
Manager, to the actual named data unit. The open member count on the scratch unit is set
to 1 and the direct write flag is cleared. Fourth, a record buffer is requested in Global
Dynamic core to be used in copying the member. Fifth, the Member Control Block created
when the member was opened to write is modified to permit output directly to the data unit
named in the open call. Sixth, the member is copied from the scratch unit to the actual
unit, and the scratch unit is closed and discarded. Finally, the DMD and DMH are updated

and written to the actual data unit, the member is logically closed via MMCLSE, and the

dynamic core used in the copy operation is freed.

Error Condition: MMCL®S aborts with a message if the NAME argument is invalid, if

close write requested and member also open to read, if member was open to write direct and
another member is open to write direct on the same data unit, or if insufficient Global

Dynamic Storage is available for MMCL@S scratch copy.

3.6-21

* EXECUTIVE MODULES

3.6.3.8 Auxiliary Modules

An auxiliary module performs a function common to several member manager modules and

is available for use by these modules.
3.6.3.8.1 MMERR - Member Manager Error Message Writer

Subroutine MMERR (NUM, NAM1, NAM2) processes fatal and non-fatal errors for the
member manager modules and the DBM control statements ARCHIVE (XAR), ATTACH (XAT), CREATE
(XCT), DETACH (XDT), and PURGE (XPU). NUM, the integer number of the error message to be
printed, is negative if the error is fatal and positive if the error is non-fatal. TMERR
prints the informative error message (indicated by the absolute value of NUM) with specific
values involved in the error condition (indicated by input values NAM1 and NAM2). If the
error 1s fatal, ANOPP is aborted by a call to XEXIT. If the error is non-fatal, a trace-

back is performed to the major DBM module called by the user.
3.6.3.8.2 MMVUM - Validate Data Unit and Member

Purpose: MMVUM determines if a data unit and member are available in the present

ANOPP operating environment,

Format: I = MMVUM (NAME)
Arguments:
NAME - a two word array containing the name of the data member and name of the

unit on which it resides.

MMVUM - returns the following integer values:
-1 - data unit does not exist;
0 - Dboth data unit and member exist;
1 - data member does not exist.

Description: MMVUM performs the same types of validations as subprogram MM@PRD;
however, no informative messages are issued. The form of the data unit and member names
is validated using subprogram XVNAME to insure that they are proper alphanumeric names.

If either name is malformed an appropriate message is issued and ANOPP is terminated.

" 3.6-22

ANOPP DATA BASE MANAGEMENT

Alternate names for both data unit and member are fetched and the Data Unit Directory
is searched for the named unit. If it is not found, a function value of -1 is returned to
the caller. If the data unit is found, its Data Member Directory is read into core and
searched for the named data member. If it is found, a function value of zero is returned.

Otherwise, the function's value will be 1,
3.6.3.8.3 L@PAD Control Statement Error Message Writer - XLDERR

Subroutine XLDERR(NUM, NAME, IVAL, IRAY, L) processes non-fatal errors for the DBM

control statement L@AD.
3.6.3.8.4 UNLPAD Control Statement Error Message Writer - XUNERR

Subroutine XUNERR(NUM, NAME, IVAL, IRAY, L) processes non-fatal errors for the DBM

control statement UNLPAL.
3.6.3.9 Hierarchy Charts

A hierarchy chart is a graphical representation of the logical relationship between
modules. Figures 1-23 are the hierarchy charts for the member manager modules and the

auxiliary modules.

Tn general, only member manager modules appear as a block entity in the charts and
all member manager modules appear at least once. The charts are in alphabetical order
with respect to module name except for Figure 1, which represents the logical grouping of
the member manager modules. A hierarchy for the auxiliary modules are also among the

alphabetical charts.

A module which is not part of member manager but is called by a member manager
module is not shown as a block entity but is listed at the bottom of the chart. The
module may be an ANOPP executive module which is part of the Executive Management System,
the Dynamic Storage Management System, or the General Utilities. It may also be a sub-
program provided by one of the CDC operating system libraries. In either case, the module

is generally of a service or utility nature and may be called many times by various member

.
l

SCINAY PAGE 1S
P QUALT TY

0
S

" 3.6-23

=
Bl

EXECUTIVE MODULES

manager modules. One of these service type modules may be of sufficient design purpose to
the calling MM module that it should receive more emphasis than simply being listed. In
these cases, the non-MM module is represented as a block entity for logical emphasis and
is noted as such on the chart,

Symbols and headings used in the hierarchy charts are given below:

NAME NAME - module name
purpose purpose - brief description

Represents logical module not existing as

| !
|
: NAME] entity. It is used for logical groupings.
| |
— J
indicates lower module is called by the
higher module.
---------- implies logical grouping wifh no direct
relationship
* in upper right corner of module block in-
dicates module is expanded as a separate
entity.
ANOPP Modules Called: a list of DBM, DSM, and General Utility

modules called by the modules in this figure.

CDC System Library Subprograms Called: a list of subprograms called by the modules
in this figure and which are not part of
ANOPP but are provided by CDC NOS operating
system libraries.

3.6-24

ANOPP DATA BASE MANAGEMENT

ss3aey) AyoaeasTH Jas3eugy J9quIK

*1 aandtg

NVIX

¢ AT

*op11I

:paTTeD SSTNPAH ddONV

up/np up/np wp/np
93EpPTITRA 23epTTeA 831epTTeA
ANTIWR ANTIWKW WNTIWH
r
Spa0oay JaqUBK Spaom pIooay sjuswa Ty paooay yoieadss
dys puTMay ang ﬂ ing Ing 03 uoTiTSOd satay uado
. dIASARW . MIAHNW . MLNdWK i R MLAdHA . JINdKWW . NS@IRA . SMIPWH
: : M : M : 5 } 3 . 3 : % _
| | ' _ _ _ |
| \ ' | | _ |
!) | |
10841Q _ pesy paoy : pacoay JusWe T JoqUIRY
Il s3tap uwedg i uadg | 399 ! 399 ! 199 { 2s80TD !
| IMJPHK | TISPHA | MLIOWK | YLIDWN | J13OWH ! SETORK
| 3% | 3] 2 ! B _ B3 | B 1
T T T T T
S T S DI U S U [A DN SR - - =
|
_ t
_ - 1
i i
! HIOYNYR |
U g3guan
| !
2

3.6-25

EXECUTIVE MODULES

jaey) AyoaexdTH JWVHIWW

anv
yoaeag

UHVSHRH

Aajug
Juy PIInd
JHVERA

*z @2an3tj

NIELX CAJELX

WUTRW 0PI XKW
(paTTRD SeTNPOW JdJONV

3.6-26

1aey) AYoJedoTH HWEWH ‘€ @an3Tg

ARt (o]

ipaTTe) sweaBoadqng Aaeaqli wa3sAs 24D
zoadrassag AdHNX “MdX
julwa Tl ¢ IAPHX MK WMWK CIWILI
oT3urs pPTTING ‘IvaI °XWSd SAWSd *TAST
8LIGHA fodsd “dWSQ ‘LI9Id “VHATV

1peTTeD SITNPON JJONV

ANOPP DATA BASE MANAGEMENT

aozdraoseq
> Axzu
jusuwRTyq waw:mwu
aT3uts PITNd L LigHH
8LJIdKWH
goidraosaq siuswaTd
juswa Ty Aa3ug 1sd Jojeaedss
aT3urs pIINg pTnd ssadoud
: ’ TLIGHH
8LJIGHW 6LIGHNK
1sd
aonpodad
LSJIGHH

Isd
pTINg
ISJIgWKW

Japesy
Jequial

pitng
HWEWW

3.6-27

~ EXECUTIVE MODULES

3aeyd AYoaedsTH S@PTOWW

' 2andT g

LJIHS
“XSYR

NIVRIY ‘10d
*HOL34I €115

]
‘anv

:paTTe) sweadoadqng Aaeaqr] waisis JdD

ATeLX “AJelX ‘AJITIX

SIRH 0PI

‘XHSTd “9Ksa

*NVIX
* INSa

‘PPTTED S3TNPON d4ONV

ago) ur saoaag SSaJppy
aW Butag *a8y paocoay J933ng AJTISA
TQWARN XWAOWK VEARR
SI0IXT SSaJappy Iuno)
wpmwmo *a8K paooay | mm wwmwz Jeyyng wup
TROAR SE9901d IHHONR 431224 uado
XWIOHKH YIAWH OHGINN
UoTIBWLIOJU] UOTIBWIOFUT
paocoay paooey pesy HRA : v
ing 189 uedg a1epdn wp/np 31p3 HOMMMMW HMMNMMU
L39) y
. YLAdHR . ALIONH . TIdPHW HAQWRN HNAIRW TSTORK TOHGHH
_ [oo [_ [
wup
3S0TD

SBTOWR

*3.6-28

ANOPP DATA BASE MANAGEMENT

3aey)y AYcaeadTH OHPAWA

GRS
TRUIRIXT
adang

JodNdX

+g aandtJ

WIS@IO
tpaTTRD sueadoadqng KaeaqrT weisds OaD

o911 ‘IWSd “WMAIRA
:paTTe) SSTNPON dJONV

SS24pPPY

Je3yng
A3Tasp
VEARK

ae33nd dTTd
TeuIs3IXI
aspaTay
dITIWKH

unod
asquay uado
ssa00ad

ORGAWK

3.6-29

. EXECUTIVE MODULES

3aey) AYSJaeaeTH WYAWW 9 suandtg

JOVIIX
‘INITdX “HOLAJX ‘LIXIX

:POTTRO SITNPOK JJONV

J088820dd
0239 WW

IR

©3.6-30

ANOPP DATA BASE MANAGEMENT

Jaey) AYdaedaTH LAWK

SS3appy
asyyng AFTa8A

VEARK

L 2andTy

LITHS “YYVRIA ()
“MSYR ‘HOL3JI ‘139 ‘aNy

:potTTe) sueadoadqng Axeaqy] weisAsS DQAD

TATHH
:P9TTR] SOTNPOW JddONV

saoaag

Jedeuey paocoay
SS8004d
XWHOHR

ATun

eier(q pesy
LIOKK

3.6-31

EXECUTIVE MODULES

3eY) AYoJRISTH ALIOWW ‘g 8andTi

NV3X

‘JALAMN “WIIWN *op1I

*P3TTeD SeTNPOW JddONV

JLIOWR

Is3 uotidraosag 1sd

ITP3 1s3 arp3 TPl
JIORN d3IOHN JIORKH

Xapurl JusWa Ty
RRIETIED de' 30 y33ual 3 juswety 3o up/np
Lsd 38S dequny 399 J3quUMN 389 atpd
I3ISHK IMNONKW MANOWHW LIOHA RNTIHR
3%
L [_
jusuaTd
199

3.6-32

ANOPP DATA BASE MANAGEMENT

jaey) AyouedasTH YLIOWR

ap
pedy
LIOWK

‘6 9an3Tg
NVIX SW9ARW ‘0@l
:paTTR) SOINPOH JdONV
wp/np
atpd
WNAIWA

paooay
389
U1IORN

3.6-33

EXECUTIVE MODULES

aey) AydoaeasTH MLIOWW ‘0T 2an3tg

np pesy

LIOWK

wp/np 3TP3
ANQINA

paoy
199
MLIOWK

NVIX “WMIWW “OP1I
‘PaTTe) SOTNPOW ddJONV

3.6-34

ANOPP DATA BASE MANAGEMENT

12842 AUSUBRIBTH JWOIWW 1T SInZ1j

[

THVHTE CRNISP HOLISI ‘YMITI4
ipeTTe) sweadouadqns Ageaqi weisAg 300
WAWA “0P1I ‘eWsa
:peTTe) s@TNPAH 440NV

saoaaq

*28pK paoody
ssaoocad
XHAOWR

3.6-35

as3sng 9113 %
TeUI23XI 199 2y
9ITOWH %vw &
! N
| am#.7£
w §.°
! L2
S B
j tJ N
o >y
AL gedg ; % o
_ c

TNE RN
i

EXECUTIVE MODULES

3aey) AyoaeasaTH YMNWH

21 ean3tg

‘LITHS “YAVHIA

“dp SMSVH “HOLAJI ‘139 ‘aNv

:paTTR) sweadoadqng AaexqiT waisAs 20D

NVIX YIWR FOPT1I
:pOTTE) SOTNPOR JJONV

S20Jda3
Ja8euey ssaJappy
puIoo9y ss200ad Je3ying AJraop
XWIOWH VEARK
L |
aousprsay wp/np
sansug 31pd
RNQIWR
]
3397
Spaoy

AMNRHRH

3.6-36

ANOPP DATA BASE MANAGEMENT

saey) AYourudTH QUd@PWW €T 8andTg

LITHS MYYHIY “d@ “MSVH ‘HOLIJI 139 ‘vMITII “aNV

:peTTR) sueaSoadqng Laeaqr welisds 2dd

AJTLX ‘JLJWLI “QLISHL “Y¥IWH °O@TI

*XWSa

¢ 9WSa

:paTTed S8TNPON ddONV

saoaad
*a8K paooay SS24pPY
ssao0ad a9yyng AJTISA
XHEORA VEAWR
UOT3BWIOFUT i __ \

TOJ1UOD wp S@ ©1url Aa3uz aao) ut L aunoy wp | ap
pITnd H{ peay dWV PTING an Ing m_ usdg ssso0ad | uadg
TOWGHH HISHR “; INVERR L T OWETHH | OWPIHRW

. 3 [R

e H b3

T

!

It

DPOSOTD *Tqel
2ansur

QLARRK

wp/np
2318PTTRA
WNARA

.2
"

| |

_

]

L

_

vmwm _
yeadg ﬂ
1
|

Cad@n

——]

3.6-37

EXECUTIVE MODULES

UOTIBWIOFUT
TOI1U0)
up prend

¢ TOWEHW

np
uadp
OHPIHN

a
3

S3aeY) AYoJedaTH GMIPWR °tn1 2an3r4

JLJINL

‘QLSHL “WIIHK

‘PeTTE) S3TNPOW dJONV

JaqUaK
HW PTTnd
;2 HHEHH

Kayug
auv pTTNng

w IRVERH

pasoT) a1qelL
33epTITEA
ALANK

wp/np
938PTTRA
HNAKK

.

_

_

319341Q

@1Tam uadp

AMdPHA

3.6-38

ANOPP DATA BASE MANAGEMENT

UOTIRWIOJU]
10J3U0)
wp prTng

TOWENWA

np
usdp

ORPBIWA

3aey) AyoaeadTH SMAPWW ST 2andTd

NJZLOX “NALOX “ALJIAL “QISHI “WIWW “LIHSYI “¥pI
:paTTED SOTNPOW dJONY

Hi Aayug pesoT1) 21qelL up/np
pPIINg aWy p1Ing 93BpPTTRA 31epPTTRA
. HWHHR _ dWVERK QLARK . HNARW

|

FebR-Bol
21Tay usdp
SMADRW

3.6-39

EXECUTIVE MODULES

3aey) AYdaeISTH LNJWW

saozaj
1o8euRy PI0OODY
$S9204d
XWIOWA

‘91 eundtg

LIIHS
NIYRTY ‘1nd (/)
‘YISYW “HOLddI ‘aNy

:poTTeD sueadoadqng Aaeaqr waisAs Jgo

WITWN ‘0PI
1POTTR) SITNPON ddONY

SS9IpPpPY
thMﬂm
A31asp

VEAHKN

paooay
BIBQ Ind

LOdRA

3.6~-40

ANOPP DATA BASE MANAGEMENT

aaey) AyodedsTH ILNAWW LT 2an3Ti

NVIX “JALAMH WMIWH “0PTI
:paTIe) SOTNPOK dJONV

as
b

X9pul

JusweTI
181 3°S
JIISHRN

uoTadyadsa(paooay
1S3 389 ng
QIOWN . LDdWH

wp/np
3TPd
HNCQIRH

-PRICINER de
ang

JLOHK

3.6-41

EXECUTIVE MODULES

Iaeyy AYoaeaeTH YLNIWR

pJaooay
ing

LOJWH

L

g1 °am3T4

NVIX “WIIHW * 0PI
(POTTRD SOTNPOH JJONV

up/np
TPl

WNAIHW

]

paooay
ang

HINdWH

3.6-42

ANOPP DATA BASE MANAGEMENT

1aey) AYoJdRABTH MLNIWW ‘g1 2an3TJ
NVIX “HNIRW 0071
:paTTE) S@TNPON JJONV
PI0DaY
Ing up/np
3TP3
_ LlNdWK WNCTHW
L
PIo}
nd

MLOdWH

" 3.6-43

EXECUTIVE MODULES

3aey) AYouaeadTH AWIWH

‘0z @2andty

LIIHS “MYVRIN ‘up
SNSVW “HOLIaSI ‘anv ‘139

:paTTeD sweaBoadqns Aaeaqr] weishs oqD

WAIWH ‘OPTI “XWSa
:paITe) SO9TNPOH ddONV

SS3Jappy saoaaz
J9313ing a3y paooey
AzTasp ssa00ad
VEARK XHAOWA

L]

2a0) ur
AW Ind
QWARK

-3.6-44

ANOPP DATA BASE MANAGEMENT

1aey) AyodaeaatH ITISHW

1S4 wouaz

uotidraosaqg
389
TIDHK

X3pur

JuswaTd
Lsd 3°S
I3ISKNW

*1Z 9and1yg

JALAMN © WIIWH
:paTTRD SOTNPOR JdNV

i
,‘\ \t]

=

3.6-45

EXECUTIVE MODULES

3aeY) AYOIBIRTH WNAWK

Lao3oearq
3TUn Youeas
ANSHR

wp/np
93BpPITRA
WNARR

"2z eanstg

AJELX ‘TWYNAX “NVIX ©W4IWM
(POTTED S8TNpAl JdONV

- 3.6-46

1aey) AYoaBISTH WOAWW ‘€7 2an81g

TRYNAX CAJELX SAJTIX ‘NVIX “NATW
1peTTe) SOTNPCOH dJONV

ANOPP DATA MANAGEMENT

3uno)d
8Ja0) uTr Axo309a1d itun xoquiey uado
aW and ITU() YOaess 23eq uado ssadoad
THIRH aNSHA ¢ OWAIWNW s OWBARK

saumeN

Jaquer/ItTun
31epTTeA
WOARKW

3.6-u7

EXECUTIVE MODULES

3.6.4 Data Table Manager

3.6.4.1 Overview

Data Tables are a special class of one-record members. To member manager they are
unformatted, one-record members of a data unit. To table manager they are internally
formatted table structures to be maintained in core while they are open. Allowance for
several types of table structures will be made. The same member/table cannot be open
simultaneously for processing by both table manager and member manager. The primary
purpose of table manager is to maintain the table/member in core across the execution of

several ANOPP modules and several openings and closings of the table.

The following is a general synopsis of events in the life of a table. When first
opened, a table is read into Global Dynamic core and its name is entered into a table
directory. When closed, the table remains in core and is logically closed in the di-
rectory. Subsequent opens will take place via the directory. If a table is altered
during the time it is open in core, it should have been opened with an open alter so that
a copy will be placed on the original member. This is necessary to preserve the integrity
of the table under the following conditions: a) while a table is logically closed in the
table directory, it can be removed from the directory either to make room for other tables
or because member manager is processing the member for writing; b) when a table is removed
from the directory, a subsequent open will read a new copy of the member into core and

place its name in the table directory.

The following open, close, and interpolation routines work for any type table.
Specific table build routines are supplied for specific table types. For further informa-

tion about the structure of specific Data Table types, see Section 3.4.2.

All table manager routines require the NAME parameter to identify the data unit and
member on which the table resides or will reside. NAME is a three word array with the

following structure:

NAME(1) unit name of the table (A8)

NAME(2) member name of the table (A8)
T 3.6-48

ANOPP DATA BASE MANAGEMENT

NAME(3) reserved word for use by table manager and other data
management routines and not to be altered by user

3.6.4.2 Open Data Table Subroutines

Two open data table subroutines have been provided to give the user the ability to
specify at open time whether a table is to be altered or not altered during processing.
A data table that is opened with alter permission will be rewritten on its data member
when closed. One open without alter permission is assumed to be intact and is not re-
written. When a data table is closed it is retained in global dynamic core as an inactive

table sc that subsequent opens need not reread it.
5.6.4.2.1 TMPPNA - Open with Alter Permission

Purpose: TMPPNA requsts that an ANOPP data table be opened with permission to alter.
Format: CALL TM@PNA (NAME)

Arguments:
NAME - a three word array containing the names of the data unit and member on
which the data table resides. On return from TM@PNA, the third word

contains the IDX to the data table in Global Dynamic core.

Description: TMPPNA calls subprogram TMT@PN passing the NAME argument and a logical
alter flag which is set to true. TMT@PN performs validations to insure that the data
table is not already open to Data Table Manager (DTM) or Data Member Manager (pMM). It
then searches the inactive table chain in the Data Table Directory for the named table.
If the table is found, its entry is linked into the active table chain. Otherwise, sub-
program TMMPPN is called to read the table into global dynamic core and build an active
table entry. The IDX of the table is then swapped into the third word of the NAME argument;
the negation of the IDX of the NAME argument is stored in the DTD entry; and the table is

opened for use.

Error Conditions: TMPPNA aborts with a message if the table is already open to Table

Manager or Member Manager.

- 3.6-49

EXECUTIVE MODULES

3.6.4.2.2 TM@PN - Open Without Alter Permission

Purpose: TMPPN requests that an ANOPP data table be opened without permission to

alter,

Format: CALL TM@PN (NAME)

Arguments:

NAME - a three word array containing the names of the data unit and member on
which the data table resides. On return from TMZPN, the third word

contains the IDX to the data table in global dynamic core.

Description: TM@PPN calls subprogram TMT@PN passing the NAME argument and a lcgical
alter flag which is set to false. TMT@PN performs validations to insure that the data
table is not already open to Data Table Manager (DTM) or Data Member Manager (DMM). It
then searches the inactive table chain in the Data Table Directory for the named table.

If the table is found, its entry is linked into the active table chain. Otherwise,
subprogram TMM@PN is called to read the table in global dynamic core and build an active
table entry. The IDX of the table is then swapped into the third word of the NAME argu-
ment; the IDX of the NAME argument is stored in the DTD entry; and the table is opened for

use.

Error Conditions: TM@PN aborts with a message if the table is already open to Table

Manager or Member Manager.
3.6.4.3 TMCL@S - Close Data Table Subroutine

Purpose: TMCL@S closes a data table.

Format: CALL TMCL@S (NAME)

Arguments:

NAME -~ a three word array containing the names of the data unit and member on

which the data table resides, and the IDX to the data table.

3.6-50

ANOPP DATA BASE MANAGEMENT

Description: TMCL@S locates the entry for the data table in the active table chain
in the Data Table Directory (DTD) and checks the NAME argument to insure that it matches
the NAME argument used in opening the table. If the table was opened to alter, it is
rewritten to its data member. It is then logically closed by swapping its IDX from the

NAME argument into its DTD entry and linking the DTD entry into the inactive table chain,

Error Conditions: TMCLPS aborts with an error message if the table being closed was

not open, if the closing name argument is not the same as the opening argument, or if the

data structure being closed is not a data table.
3.6.4,4 TMTERP - Data Table Interpolation

Purpose: Retrieve an interpolated value of a dependent variable from a data table

which is currently open.
Format: CALL TMTERP (NAME, ITYPE, X, Y, Z, ANS, ISTAT)

Arguments:

NAME - three word array with the following structure:
NAME(1) - unit name of the table
NAME(2) - member name of the table
NAME(3) - reserved; not to be altered by user.

ITYPE - type of interpolation required:
ITYPE = 0 no interpolation permitted
ITYPE = 1 linear interpolation requested
X,Y,2 values of the independent variables for which the corresponding dependent

variable value is desired.

ANS - petrieved value if ISTAT = 1} otherwise contents unaltered.

ISTAT - status return:

ISTAT = 1 request complete; ANS contains dependent variable value
desired
ISTAT = © request not completed; ANS does not contain dependent

variable value desired.

Description: TMTERP module attempts to retrieve from the Data Table specified by

NAME the desired dependent variable value.

-3.6-51

EXECUTIVE MODULES

TMTERP validates that (1) the table is open, (2) the table type found in the table is
valid, (3) the interpolation procedure requested (ITYPE) is valid for this table, and (4)
the number of independent variables found in the table is within range. If no error has

been detected in the validations, an attempt is made to retrieve the desired value.

If the dependent variable is not in the table, an interpolated value will be returned
if ITYPE does not equal zero. If the dependent variable is outside the range of the
table, extrapolation procedures will or will not be used according to the extrapolation
instructions found within the table. (These instructions are established by the user at

the time the table is built.)

The user will be informed via ISTAT if the dependent variable value desired has been
retrieved. The user must insure that the type of X, Y, Z, and ANS variable correspond to

the variable types expected by the table.

Error Conditions: TMTERP prints an error message and returns to the caller with

request not filled if the requested interpolation procedure is invalid. TMTERP aborts
with a message if the number of independent variables found in the data table is out of

range, if the table type is invalid, or if an error was detected in the table edit.
3.6.4.5 Data Table Building

Since data tables may be built in a functional module, subroutines are provided which
permit the user to build tables of the type supported by table manager (see Section 3.4.2
Data Table Types). Tables may also be built in the control statement stream by using the

TABLE CS (see the TABLE CS description in Section 3.5).
3.6.4.5.1 TMBLDl - Build Type 1 Table

Purpose: Build data table of structure type 1.

Format: CALL TMBLDl (NAME, NINT, INT, ITYPDV, NIND, IDSCRP, 11, 12, I3, IDV, IERR)

Arguments:
NAME - three word array with the following structure:

3.6-52

NINT

INT

ITYPDV

NIND

IDSCRP

I1,12,13

IDV

IERR

ORIGINAY; pAgy 1
O0R QUALITY

ANOPP DATA BASE MANAGEMENT

NAME(1l) - unit name of table
NAME(2) - member name of table
NAME(3) - reserved; not to be altered by user.

number of elements in array containing interpolation procedures accept-

able on this table.

array containing integer codes of interpolation procedures acceptable

on this table. Valid codes are:

0 - no interpolation
1 - linear interpolation

type of dependent variable. Valid values are:
1 - integer

2 - real single precision

3 - real double precision

number of independent variables in this table -- 1, 2 or 3.

array of dimension NIND*u4 containing a description of the NIND inde-

pendent variables.

(4*1-3) FPRMAT of the Ith independent variable:
0 - ordered position from one to IDSCRP(4%I-2). This
variable value array does not exist

1l - integer

2 - real single precision

3 - real double precision
(4*1-2) Integer number of Ith independent variable (.GE.0)
(4%I-1) Interpolation procedure if value desired is greater than

the largest value of the Ith independent variable
0 - no interpolation

1 - use closest independent variable value

2 - extrapolate (linear)

(u*1) Interpolation procedures if value desired is less than the
smallest value of the Ith independent variable (same values
as above)

start location of arrays containing independent variable values as
defined for data table type 1. If an independent variable is format

type zerc for ordered position, then the corresponding array is ignored.
NIND dimensional array of dependent variable values.

indicates if table was built:
IERR 0 no error detected; table was built
IERR -1 error detected; table was not built

3.6-53

. EXECUTIVE MODULES

Description: The TMBLDl module builds a Data Table Type 1. The input values NINT,
INT, ITYPDV, NIND, and IDSCRP are edited to insure they are in the range expected. The
independent variable arrays are validated to insure they are in monotonic sequence. If no
errors are detected in the edit, a Type 1 table structure is generated and put on the
unit/member specified by NAME. The table is not maintained in core but is available for
processing via TMPPN. If a duplicate table exists, it is replaced. A table by this name
may not currently be open either by a table manager or a member manager call. The user is

informed via IERR if an error occurred which prevented the building of the table.

Error Conditions: TMBLD1 writes an error message if the unit the table was to be

built on is not in the unit directory, if there is insufficient core to build a table, or

if errors were detected in editing the values to be used in building the table.
3.6.4.,6 Auxiliary Modules

An auxiliary module performs a function common to all table manager modules and is

available for use by these modules.
3.6.4.6.1 TMERR - Table Manager Error Message Writer

Subroutine TMERR (NUM, NAME, IVAL, IRAY, L) processes fatal and non-fatal errors for
the table manager modules and the DBM control statement TABLE (XTB). NUM, the integer
number of the error message to be printed, is negative if the error is fatal and positive
if the error is non-fatal. TMERR prints the informative error message (indicated by the
absolute value of NUM) with the specific value(s) causing the error condition (indicated
by input values NAME, IVAL, IRAY). If the error is fatal, ANOPP is aborted by a call to
XEXIT. If the error is nbn—fatal, a traceback is performed to the major table manager

module called by the user.

"3.6-54

ANOPP DATA BASE MANAGEMENT

3.6.4.7 Hierarchy Charts

A hierarchy chart is a graphical representation of the logical relationships between
modules. Figures 24-27 are the hierarchy charts for the table manager modules and the

auxiliary module.

In general, only table manager modules appear as a block entity in the charts and all
table manager modules appear at least once. The charts are in alphabetical order with
respect to module name except for Figure 24 which represents the logical grouping of the
table manager modules. A hierarchy for the auxiliary module is also among the alpha-

betized charts.

A module which is not part of table manager but is called by a table manager module
is not shown as a block entity, but is listed at the bottom of the chart. The module may
be an ANOPP executive module which is part of Member Manager, the Dynamic Storage Management
System, or the General Utilities. It may also be a subprogram provided by one of the CcDC
operating system libraries. In either case, the module is generally of a service or

utility nature and may be called many times by various table manager modules.

Symbols and headings used in the hierarchy charts are given below:

NAME NAME - module name
purpose purpose - brief description
r-— - - - m
| !
| NAME I represents logical module not existing as
i | entity. It is used for logical groupings.
Loe e m = -
indicates lower module is called by the
higher module.
---------- implies logical grouping with no direct
relationship.
In upper right corner of module block
* indicates module is expanded as a separate

entity
' 3.8-55

EXECUTIVE MODULES

ANOPP Modules Called: a list of DBM, DSM, and General Utility
modules called by the modules in this figure.

CDC System Library Subprograms Called: a list of subprograms called by the modules
in this figure and which are not part of
ANOPP but are provided by CDC NOS operating
system libraries.

© 3.6-56

jaey) Ayoaeasty JaeSeuey ITqRlL ‘HZ 9an3TJ

AIELX ‘AJELX

aTqel ®3IE(aTqeL EaeQ ..AMmax ”m>szx . *NVIX ,.mmmze
8ATIORU] 994j aaT3oRUI d81] JALAMN HNARR THVSHH YINdWA
ILIKL ILIKL ¢ QMdPWR .nwmszz .mmmozz .mmquzz
op1I SHSQ Hsa Msa

:paTTRD SITNPOH JddONV

ANOPP DATA BASE MANAGEMENT

aa0) o3jul £2039931q wwmmw MWMM Kao300a1q sousnbes
manmwwmuma aTqel Uoaess pooy aTqel Yoaeas 91epTTEA
pEod QLSHL QLSHL DIASAL
NABHKHL NAOWHL .
e~
)
r &
J0303aT IIN]ONILS Y
atqel aTqel a1qEL a aTqEL senTep «@
eieq uadp eieq usdg yoaess 2310J9UB9 3TqRlL TH
N@IRL NdBLHL QLSHL TNIOHL TTTRL
]
91de
F93TV YITH woa3 anten st oTqeL ®3eq T °dAL
aTqel uedy aAaTIIDY a1qeL uado 9507 aTqel PTIN
YNIGAL JYILAL NA@HL S@TORL TAHWL
Y T T T T
[_ [[|
_Illllll.rllll||Fl.«14.l||_llll||llllll_
|
Fr——=——=n"
| i
| yaovNvH |
" 3178vL :

EXECUTIVE MODULES

jaey) AysaeasTH WYIWL ‘gz °@am31J

SVI
:pot1Te) sweadoadqns Aaeaqyl weisds 04D

JOVILX ‘dRAdLX
‘NITIX ‘HOLIdX “LIX3AX

{paTTe) SOTNPON ddONV

J93TaM
a8essoy
Joaaj
TIIRL

3.6-58

ANOPP DATA BASE MANAGEMENT

1zey) AyoaedaTH XANIWL °9Z 2an31d

aTqno@ Tesy

ONIX “WATL
:p@TTe) SweaBoxdqng ddONV

aTqnoq Teay

XINIWL

sTqnog Teod JeaUuTT

QUEIWL QYVIRL ML
} 218uts Tedy J9893ul

a13ur -T] x28a3ur atB8urs 1eE? -
T3uts 1esd T S q Jadequr deaut] Je’auy]
NIGIRL SYYIUL NIVIHL SWTHL INITHL
motag aaoqy
uotaeTodeaixi uotierodeaaxy :oﬁmwmm,uouﬁ
Jesaurq aeaur] JesuT]
gINL VIWL NITHL
JLVTOYdEILINI

3.6-59

EXECUTIVE MODULES

jaey) Ayoaeasey JYILHL

(2 @2an3tg

SEvI

1paTTR) sweaSoadqns weisAs Aaeaqy] 0dd

AJelX ¢ NVIX ‘oWysEx ¢ ysdX
*NI¥SHEX *NIIHL ‘JALAMN “OPTI
tpaTTR) SATNPON ddONV
ajerodaejur Je3uTod Fe3uted Keaay yoaeas
Z°X 18S X 39S
% XANIHL ZANIWL XNIWL HOYSKHL
s3eTodasiul Jaiurod JIe3urod Keaay yoaees
A 39S X 388
XANIHWL Z ANTHL XNIKL HO¥SHL
3
al J93utod
yoaeas ¥ 39S aieTodrazul feaay yoaeras
QLSHL XNIKL * XININL HRMSHL
Z'IX soTqeTJIep ﬂw.xmwﬂnmﬂhm> sanTep X OTqeIJaeA
juspuadeput aTqel 3TPI juapuadepul ?Tqel juspuadapul
@aayy oML auTwWaa318(] aup
€TdIRL 4103RL CT4LRHL dIVLIHL TI4LRL

aTqel woag
onTe;A
w>0.m.HPO~m
JUILRL

3.6-60

EXECUTIVE MODULES

3.7 DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)
3.7.1 Overview

The ANOPP Dynamic Storage Manager (DSM) provides a method of allocating and releasing
core storage within ANOPP. The boundaries of the storage area to be managed are defined
to be from the end of the longest overlay segment of the presently executing executive or

functional module to the last word of the field length.

Obviously, as different executive and functional modules are called into execution,
the available free storage fluctuates. Therefore, in order to provide for executive
inter-module communication and for the storage of ANOPP directories and tables, a section
of free storage, known as "Global Dynamic Storage" (GDSY, has been defined. The starting
address of GDS is established by the Executive Initialization Phase (XBS) and must be
beyond the longest segment of the largest module which will be executed by a particular

ANCPP run.

The rest of the free storage is available for intra-module usage as "Local Dynamic
Storage” (LDS). LDS begins with the word following the longest segment of a particular

module and ends at the start of GDS.

Addressing of Dynamic Storage by the user is accomplished by indexing relative to a
fixed common block - XANPPP. The FORTRAN statement C@MM@N/XAN@PP/IX(1) must be included
in every program and subroutine that'directly references dynamic storage. DSM will then
return an index (IDX), relative to XAN@PP, whenever a block of dynamic storage is reserved
(DSMG). The variable containing the index is thereafter reserved for DSM use. The con-
tents of IDX must not be changed by the user unless the reserved block has been released

(DSMF) or another variable is provided to DSM (DSMS).

At the beginning of execution, all core in the dynamic storage areas belong to two
free blocks, one for LDS and one for GDS. As blocks are reserved and released during
execution, dynamic storage will be divided into a number of separate blocks, some reserved

and some free. To minimize fragmenting of dynamic storage, DSM will collapse a block of

) 3.7-1
AL PAGE 1S
%%I%TgoR QUALITY

EXECUTIVE MODULES

dynamic storage into adjacent free blocks, when it is released, to form a single free

block.

Still, fragmentation of free blocks may reach the point where a single block of the
requested size cannot be reserved for the user. When this occurs, the free blocks will be
consolidated into one free block. This occurs automatically without the user's knowledge
and will involve the relocation of reserved blocks and the updating of their respective

indices.

If the user wishes to inhibit consolidation, he may "lock" dynamic storage using a
DSM utility (DSML). When the situation requiring the lock is passed, the user must then
"unlock" dynamic storage (DSMU) to re-enable consolidation. The results of absolute

addressing schemes in unlocked dynamic storage are unpredictable and best avoided,

Finally, DSM provides a utility to expand a reserved block‘(DSMX). DSMX will attempt
to expand a reserved block by reserving any adjacent free storage. If that is not possi-
ble, DSMX will reserve a new, larger block, relocate the contents of the original block,
and update the user's IDX. DSMX will relocate the specified block regardless of whether

dynamic storage is locked or unlocked.

3.7.2 Dynamic Storage Structure

The Dynamic Storage Management System maintains two distinct storage areas in the
free storage area defined as the block of core from the end of the longest overlay segment

of the presently executing executive or functional module to the last word of field length.

The area known as Global Dynamic Storage (GDS) begins somewhere beyond the longest
segment of the largest module exécuted during the ANOPP run, and ends with the last word
of field length. The length of GDS is determined by the LENGL parameter on the AN@PP
control statement, if specified, or a system default that provides a minimum length
necessary for ANOPP to run. GDS is established during the Initialization Phase (XBS) for

the life of the ANOPP run.

3.7-2

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

The area known as Local Dynamic Storage (LDS) begins with the first word following
the overlay segment in current execution and uses all storage not already allocated for
GDS. LDS is initialized by each functional or executive module according to the length of
its overlay segment. The positioning of LDSA is accomplished by loading a labeled common
block after the longest overlay segment of the module. The definition and placement of
this common block is the responsibility of the user. The name of this common block must
be unique and by convention begins with LDSA. Fach functional or executive module that

initializes LDS must also release LDS before control passes to another module.

The structure of the two storage areas LDS and GDS is identical. Each has three
header control words and a single trailer control word that identify the storage type (GDS
or LDS), give the pointer to the first block in the free storage chain, and delimit the

storage area (see Dynamic Storage Control Words Section).

As the free storage in GDS and LDS is reserved by users, and subsequently released,
the free storage becomes fragmented. In order to keep track of these fragmented free
storage blocks, each storage area maintains its own free storage chain. As part of this
chain, each free block contains a forward and a backward pointer to other blocks in the

chain.

3.7.2.1 Dynamic Storage Control Words

The Dynamic Storage control words include three header words and a single trailer
word on both Global Dynamic Storage and Local Dynamic Storage. These header and trailer
control words are initialized by the DSMI module at the time the Global Dynamic and Local

Dynamic storage areas are initialized by DSMI.

The header control words are the three words beginning with the first word of the
dynamic storage area (GDS or LDS). Word 1 is initialized by DSMI with the dynamic storage
type (3HGDS or 3HLDS). Word 2 is initialized by DSMI with the relative address of the
first block in the free storage chain. Word 3 is initialized by DSMI with a convenient

bit pattern (all bits on) for delimiting the storage area.

3.7-3

EXECUTIVE MCDULES

The trailer control word is also initialized by DSMI with a convenient bit pattern

(all bits on) for delimiting the storage area.

EXAMPLE :

IX(SADDR) LDS or GDS

IX(SADDR+1) SADDR43

IX(SADDR+2) 7777777777777777777777777777T7777777777
(This area holds blocks

Storage words reserved by users of the

available to system, plus the free

user storage chain.)

IX(EADDR) 77777777777777777777777777777777777777

where SADDR and EADDR are parameters from the /XDSMC/ common block.
SADDR is the relative address of the start of dynamic storage area.

EADDR is the relative address of the end of dynamic storage area.
3.7.2.2 Reserved Block Control Words

The reserved block control words include three header words at the beginning of each

reserved block and one trailer word at the end of the block.

Word 1 of the header control words of a reserved block is defined as the complement
of the length of the reserved block. In this case, length does not include the reserved
block control wérds. Word 2 of the header control words is defined as the name (1-6
characters) of the user that reserved the block. User name is taken from the USER para-
meter on the DSMG call to reserve the block Word 3 of the header control words is set to

the relative address of the user's IDX variasle.

The trailer control word of a reserved block, like the first header control word, is

set to the complement of the block length.

Reserved block control words are defined by the DSMG module when the block is re-

served.

3.7-4

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

EXAMPLE :
RESERVED BLOCK STRUCTURE
IX(IDX-3) ~-LENGTH
IX(IDX-2) USER (1-6 CHARACTERS)
IX(IDX-1) Lgc (IDX)
Length
IX(IDX+LENGTE) -LENGTH

where ILOC is an integer function that determines the address of the IDX

variable relative to /XANZPP/.

Blocks may be reserved in either Global Dynamic Storage or local Dynamic Storage.
After initialization of Global Dynamic Storage and Local Dynamic Storage, and one block has
been reserved with IDX = IDXA and length LENGTHA in GDS, the storage area appears as

follows:

3,7-5

EXECUTIVE MODULLS

IX(LSADDR) LDS
IX{LSADDR+1) LSADDR+3
IX(LSADDR+2) 777777777777777777777777777777717777777
FREE STORAGE
IX(LEADDR) 777777777777777777777777777777777777777
IX(GSADDR) GDS
IX(GSADDR+1) GSADDR+3+LENGTHA+U
IX(GSADDR+2) 7777777777777777777777177777771777777717
IX(IDXA-3) -LENGTHA
IX(IDXA-2) USER
IX(IDXA-1) IL@C(IDXA)
RESERVED BLOCK LENGTHA
IX(IDXA+LENGTHA) -LENGTHA
FREE STORAGE
IX(GEADDR) 777777717777777777777171777171717717717777777

where ILHC returns the address of the IDXA variable relative to /XANPPP/ and

where /XDSMC/ common block parameters have the following definitions:

LSADDR - LDS start relative to /XAN@PP/
LEADDR - LDS end relative to /XAN@PP/
GSADDR - GDS start relative to /XANQPP/
GEADDR - GDS end relative to /XANGPP/.

3.7.2.3 TFree Storage Control Words

Free storage in GDS and LDS is maintained in a chain for internal control. There-
fore, each free block header contains a forward pointer and a backward pointer that
establishes the block's place in the chain. The free block control words include a three-

word header and a trailer word.

©3.7-86

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

Word 1 of the header control words contains the length of the free storage block.
This length excludes the free block control words. Word 2 of the header contains the
address relative to /XAN@PP/ of the next block (forward pointer) in the free chain. Word
3 of the header contains the address relative to /XAN@FPP/ of the previous block in the

chain (backward pointer).

The trailer control word of a free block, like word 1 of the header, contains the

length of the block. This length excludes control words.

When either storage area GDS or LDS is initialized, all words in that storage area
belong to the free storage chain, which has only one block. The DSMI module defines the
control words for the single block in the free storage chain as well as the control words

for the storage area.

EXAMPLE:
FREE BLOCK STRUCTURE
IX(AVAIL) LENGTH
IX(AVAIL+1) NEXT
IX(AVAIL+2) PREVIOUS °
LENGTH
IX(AVAIL+LENGTH+3) LENGTH

where AVAIL is the address relative to /XAN@PP/ of free block

3.7.3 Dynamic Storage Management System User Modules

Although dynamic storage is intended for use by the ANOPP Executive and Data Manage-
ment Systems, functional modules may also make use of DSM. The calling sequence for most

DSM subroutines is as follows:

CALL DSMx (USER, TYPE, IDX, Pl...,Pn)

EXECUTIVE MODULES

USER - integer variable defining name of calling module as a one to six character
Hollerith constant

TYPE - defines the dynamic storage type (LDS or Local Dynamic Storage and GDS
for Global Dynamic Storage)

IDX ~ user defined integer variable which will contain the location of a block
of dynamic storage relative to a reference point. For the ANOPP system,
the reference point is the /XAN@PP/ common block. The address of IDX
will be stored in the block of dynamic storage reserved for USER, and
the index stored at that address will be updated whenever the dynamic
storage block is moved due to a consolidation request.

Pl-Pn - miscellaneous parameters required by the specific DSM module.

The USER parameter required by most DSM modules is the key. to ownership of a reserved
block of storage. When a storage block is reserved, the name of the user making the re-
quest is stored in the block. Subsequent operations on that block of storage are per-

mitted only for the appropriate user.
3.7.3.1 DSMB - Determine Dynamic Storage Boundaries

Purpose: To retrieve the start and end addresses of Local Dynamic Storage (LDS) for
subsequent initialization of LDS by DSMI.

Format: CALL DSMB(A)

Arguments:

A - array in labeled common LDSAxxx, supplied by the user, which has been reserved
for Local Dynamic Storage. On output, A{l) contains the index relative to
/XANPPP/ to start of Local Dynamic Storage. A(2) contains the index relative

to /XAN@PP/ to end of Local Dynamic Storage.

=3.7-8

DYNAMIC STORAGE MANAGEMENT SYSTEM (DsM)

Description: The DSMB module should be called when a module is integrated into the
ANOPP system to get the start and end addresses of Local Dynamic Storage. On entry,

Clobal Dynamic Storage must already be initialized.

Labeled common LDSAxxx is loaded immediately after the user's longest module to give
him full benefit of the available storage. DSMB calculates the start of the array A in
labeled common LDSAxxx as an index relative to /XANPPP/ and stores the index in the first

word of the array. This is the index to the beginning of LDS.

DSME calculates the end of LDS as an index relative to /XAN@PP/ and stores the index
in A(2). The end of LDS is calculated as the address of the word immediately preceeding

the start of Clobal Dynamic Storage.

With the start and end address of LDS stored in the first and second word of array A,

the user may initialize LDS via DSMI.

Error Conditions: DSMB aborts with a message if LDS and GDS boundaries overlap.

3.7.3.2 DSMD - Dynamic Storage Dump
Purpose: To dump the contents of Global or Local Dynamic Storage or of a single
reserved block.

Format: CALL DSMD (USER, TYPE, IDX)

Arguments:

USER - one to six-character name of user for dynamic storage area or reserved

block.
TYPE - three-character code indicating storage type (3HGDS or 3HLDS).

IDX - index relative to IX of reserved block to be dumped, or zero, if entire

storage area is to be dumped.

Description: The DSMD module should be called to dump all dynamic storage or a
single reserved block. Prior to performing the dump, DSMD validates the USER and TYPE

arguments for a dynamic storage dump or USER, TYPE, and IDX for a reserved block dump.

3.7-9

EXECUTIVE MODULES

DSMD prints the contents of the dynamic storage area control words including storage
type, first free block pointer, dynamic storage, start address, and end address. Then the
contents of the storage area or the reserved block are dumped. For the dump of an entire
storage area, only the contents of control words are printed for free blocks, while all

words in reserved blocks are printed.

Error Conditions: DSMD aborts with a message if the dynamic storage type is not

initialized, if the dynamic storage type is invalid, if the user is invalid, or if the IDX

is invalid.

3.7.3.3 DSMF - Free a Reserved Block of Dynamic Storage
Purpose: To free a block of dymamic storage previously reserved by a call to DSMG.
Format: CALL DSMF(USER, TYPE, IDX)

Arguments:

USER - one to six-character name of user requesting to free the block residing

at the address specified by IDX in storage area identified by TYPE.

TYPE - three-character code identifying storage area where block is to be freed
resides.
IDX - index relative to /XAN@PP/ for reserved block that is being freed. i

Description: The DSMF module frees a reserved block and returns it to the free
storage chain making it available for use. However, before freeing the block, DSMF
validates that the user freeing the block is the same user that reserved the block and

that the storage type and IDX are valid.

The header and trailer control words of the reserved block (see Section 3.7.2) are
defined to make the block part of the free storage chain. The control words will reflect

block size and forward and backward pointers to the free storage chain.

If either, or both, of the blocks bordering the newly freed block is(are) also a free

block, the newly freed block is collapsed into the adjacent free block to form a larger

3.7-10

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

free block., Control words for the newly formed block are redefined to reflect the new

size and adjustment in the forward and backward pointers to the chain.

Error Conditions: DSMF aborts with a message if there is an invalid user, dynamic

storage type or IDX.
3.7.3.4 DSMG - Get A Block of Dynamic Storage

Purpose: To obtain a block of dynamic storage from the free storage chain, reserve

it for the user, and return the IDX of the reserved block.

Format: CALL DSMG(USER, TYPE, IDX, MIN, MAX, LEN)

Arguments:
USER - one to six-character name of user reserving a block.
TYPE - three-character code indicating storage area where block should be

reserved (3HGDS or 3HLDS).
IDX - (OUTPUT) address relative to /XANEZPP/ for reserved block. IDX points

to first usable word of block (first word following reserved block

header).
MIN - minimum number words of dynamic storage required by user.
MAX - maximum number words of dynamic storage desired by user. i
LEN - (OUTPUT) length of dynamic storage block reserved for user. Length

excludes reserved block control words. If there was an insufficient
amount of free storage available to satisfy user's request, the LEN

parameter is set to zero on output.
Description: The DSMG module attempts to locate and reserve a block of dynamic

storage that will satisfy the user's requirements. DSMG searches the free storage chain

for a free block that will satisfy the user's maximum request.

1f such a block is found, the maximum number of words requested is reserved for the
user, and the reserved block control words are defined accordingly. The address relative

to /XANPPP/ of the reserved block is returned toc the user in the IDX variable.

3.7-11

ORIGINAL PAGE IS
OF POOR QUALITY

. EXECUTIVE MODULES

If the entire free block is used in allocating the reserved block, then the free
block is removed from the free storage chain. In order to remove a block from the free
chain, the forward pointer of the preceeding block in the chain and the backward pointer
of the next block in the chain are redefined to point to each other. This completely

removes the block from the free chain.

EXAMPLE: Assume that on entry to DSMG Local Dynamic Storage has the following

configuration.

IX(LSADDR) LDS

AVAILA(1ST FREE BLOCK)
7777777777777777777777177177777777777
IX(AVAILA) LENGTHA
AVAILC(FORWARD POINTER)
LSADDR(BACKWARD POINTER)

(1)

FREE BLOCK A OF LENGTH LENGTHA

LENGTHA
-LENGTHB
USERB
ILAC(IDXB)
IX(IDXB)
RESERVED BLOCK B OF LENGTH
LENGTHB
-LENGTHB
IX(AVAILC) LENGTHC
ZERO (FORWARD POINTER)(Q)
AVAILA (BACKWARD POINTER)
FREE BLOCK C OF LENGTH LENGTHC
LENGTHC
IX(LEADDR) 7777777717777777777771777771777777777777
(1)

The backward pointer of the first block in the free chain always points to the
start of the dynamic storage area.

(2)

The forward pointer of the last block in the free chain always contains zero.

3.7-12

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

Also assume that the user requests a block where MIN = MAX = LENGTHA. Then DSMG
uses all of free block A and removes block A from the free chain. Then LDS has the follow-

ing configuration. An * indicates a changed entry.

IX(LSADDR) LDS
AVAILC *
77777777777777177717777777777777777777
-LENGTHA *
USERA *
ILPC(IDXA) *
IX(IDXA) RESERVED BLOCK A
OF LENGTH LENGTHA
~-LENGTHA *
-LENGTHB
USERB
IL@C(IDXB)
IX(IDXB)
RESERVED BLOCK B
OF LENGTH LENGTHB
-LENGTHB
IX(AVAILC) 4 LENGTHC
ZERO (FORWARD POINTER)
LSADDR (BACKWARD POINTER) *
FREE BLOCK C
OF LENGTH LENGTHC
LENGTHC
[X(LEADDR) 77777777777777777777777777777777777777

In the example above, IL@C is a function that returns an address relative to /XANQPP/,

and /XDSMC/ parameters are defined as follows:
LSADDR - LDS start address relative to /XAN@PP/

LEADDR - LDS end address relative to /XAN@PP/

3.7-13

EXECUTIVE MODULES

However, if only a portion of the free block is used in allocating a reserved block,
then the free block maintains its place in the free chain but is reduced in size. Control
words for the reduced free block are redefined to reflect the block's reduced size. In
addition, the forward pointer of the preceeding block in the chain and the backward
pointer of the next block in the chain are redefined to reflect the reduced free block's

next location.

EXAMPLE: Assume that on entry to DSMG local dynamic storage looks exactly like it
did at the beginning of the previous example. Also assume that the user requests a block
where MIN = MAX<< LENGTHA. Then DSMG reserves only a portion of free block A, and LDS has

the following configuration.

3.7-1u

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

IX(LSADDR) LDS
AVAILA' %
777777777777 77777777777777777777777
-LENGTHX *
USERX %
ILOC(IDXX) *
IX(IDXX)
RESERVED BLOCK X
OF LENGTH LENGTHX
-LENGTHX *
IX(AVAILA') (LENGTHA-LENGTHX~4) *

AVAILC (FORWARD POINTER)
LSADDR (BACKWARD POINTER)

REDUCED FREE BLOCK A
OF LENGTH LENGTHA-LENGTHX-4

.

*

(LENGTHA-LENGTHX-4)
-LENGTHB

USERB

ILOC(IDXB)

IX(IDXB)
RESERVED BLOCK B
OF LENGTH LENGTHB

~-LENGTHB

IX(AVAILC) LENGTHC
ZERO (FORWARD POINTER)

AVAILA' (BACKWARD POINTER)

FREE BLOCK C
OF LENGTH LENGTHC

LENGTHC
IX(LEADDR) 777777777777777717777777777777777777

where IL@C and /XDSMC/ parameters LEADDR and LSADDR are defined in the previous example.

3.7-15

w0t UALETY

' EXECUTIVE MODULES

If attempts to find a free block that will satisfy user's maximum request fail, but
there are enough words in all fragmented free blocks combined to provide at least the

minimum request, then a consolidation of free storage is performed.

After consolidation, the largest block in the free chain is examined to see if it
satisfies the maximum request. (Note that if the dynamic storage area was locked, the
consolidation is a null process and the storage area is unchanged. However, if the
consolidation is actually accomplished, then all available words in the free chain have
been consolidated into a single block.) If the free block satisfies the maximum request,
all or part of the block is reserved for the user., If the free block satisfies only
minimum, or some value between minimum and maximum, then all or part of the free block is

reserved accordingly.

If all attempts fail to satisfy the user's request, the block length LEN returned to

user is set to zero.

Error Conditions: DSMG aborts with a message if an invalid storage type is requested,

if the storage type requested is not initialized, if the minimum block size requested
exceeds maximum block size requested, if LDS or GDS has been overlayed, or if the minimum

or maximum block size requested is negative or zero.
3.7.3.5 DSMI - Initialize Dynamic Storage

Purpose: To initialize the control words for the specified dynamic storage type. 1In
addition, to initialize the contrecl words for the single free block in the free storage

chain for the dynamic storage type initialized.

Format: CALL DSMI(USER, TYPE, START, END)

Arguments:

USER - one to six-character name of user requesting initialization.
TYPE -~ three-character ccde indicating storare type to be initialized (3HGDS or

3HLDS).

3.7-186

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

START - integer variable containing the absolute address of the start of dynamic
storage.

END - integer variable containing the absclute -address of the end of dynamic
storage.

Description: The DSMI module must be called to initialize a dynamic storage area
before that storage area may be used. DSMI initializes the dynamic storage control words
described in Section 3.7.2.1 Dynamic Storage Control Words, and the free block control

words described in Section 3.7.2.3 Free Storage Control Words.

Error Conditions: DSMI aborts with a message if the storage area being initialized

has already been initialized, if the start address for the storage area is invalid, if the
user requesting initialization is invalid, if there is insufficient storage length for

initialization, or if LDS/GDS boundaries overlap.
3,7.3,6 DSML - Lock Dynamic Storage

Purpose: To prohibit consolidation of fragmented dynamic free storage.

Format: CALL DSML(USER, TYPE)

Arguments:
USER - one to six-character name of user imposing lock condition on dynamic storage.
TYPE - three character code indicating dynamic storage on which lock condition is

being imposed.

Description: The DSML module increments the user lock against consolidation of free
storage for the dynamic storage area specified. However, before incrementing the user
lock, DSML does a consolidation of free storage. The consolidation relocates all reserved
blocks to contiguous words of storage immediately following the storage area's control

words. This forces all free words of storage, however fragmented, into a single free
block.

If DSML has been called previously, such that the user lock has already been incre-
mented, then the consolidation becomes a null process and DSML increments the user lock

again.
3.7-17

EXECUTIVE MODULES

Error Conditions: DSML aborts with a message if the storage type is invalid.

3.7.3.7 DSMQ - Query to Obtain Size of Largest Available Block

Purpose: To return the length of the largest amount of free storage available.

Format: CALL DSMQ(USER, TYPE, LEN)

Arguments:

USER - one to six-character name of user making inquiry.

TYPE - three-character code indicating dynamic storage area being queried.
LEN - (OUTPUT) length of largest amount of free storage available in storage

area specified. The LEN parameter will be set to zero if no free storage

is available.

7

Description: The DSMQ module returns the amount of free storage available to the
user. If the storage area specified is locked against consolidation, the length returned
is the length of the largest free block available. If the storage area is not locked
against consolidation, DSMQ will consolidate the free storage and return the length of the

resulting free block.

Error Conditions: DSMQ aborts with a message if the storage type is invalid.

3.7.3.8 DSMR - Release Dynamic Storage

Purpose: To release dynamic storage previously initialized via DSMI.

Format: CALL DSMR(USER, TYPE)

Arguments:
USER -~ one to six-character name of user releasing dynamic storage.
TYPE -~ three-character code indicating dynamic storage type (3HGDS or 3HLDS).

Description: The DSMR module releases dynamic storage previously initialized via the
DSMI module., The user must call DSMR to release Local Dynamic Storage before a new over-

lay segment is introduced and control passes to another user.

3.7-18

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

Users are not prevented from releasing Global Dynamic Storage, but unpredictable

results are certain to occur since the ANOPP system uses GDS for its directories and

tables.

Releasing a storage area causes the user lock against consolidation to be cleared.

Error Conditions: DSMR aborts with a message if the user does not own the area of

storage being released or if the storage type is invalid.

3.7.3.9 DSMS - Swap ID¥ Variables

PurEose:

To change the address of an IDX maintained by Dynamic Storage Management

System to another address.

Format:

Arguments:

USER -

TYPE

@IDX

NIDX

CALL DSMS(USER, TYPE, @IDX, NIDX)

one to six-character name of user swapping IDX variables.

three-character code indicating dynamic storage type (3HGDS or 3HLDS).
("old IDX") the IDX variable that is currently defined to Dynamic Storage
Management System as having the index relative to /XAN@PP/ of the reserved
block.

("new IDX") the IDX variable that, on output from DSMS, contains the

index value originally contained in the @IDX parameter.

Description: The DSMS module may be used when the user wishes to redefine an IDX

variable. DSMS sets the new IDX variable NIDX to the value of the old IDX variable @IDX.

In addition, word 3 of the reserved block control words is redefined to contain the address

relative to /XAN@PP/ of the new IDX variable. Therefore, in subsequent DSM operations

where the reserved block is relocated due to free storage consolidation the new IDX

variable will be updated to contain the new location of the reserved block.

Error Conditions: DSMS aborts with a message if the storage type is invalid, if the

user is invalid, or if the IDX is invalid for the reserved block.

3.7-19

EXECUTIVE MODULES

3.7.3.10 DSMU - Unlock Dynamic Storage

Purpose: To unlock dynamic storage to permit consolidation of free storage.

Format: CALL DSMU(USER, TYPE)

Arguments:
USER - one to six-character name of user imposing lock against consolidation.
TYPE - three-character code indicating storage type (3HGDS or 3HLDS).

Description : Each time DSMU is called the user lock on the storage type specified
is decremented by one. Therefore, if DSML has previously been called more than one time
to increment the lock, a single call to DSMU does not insure that the user lock against

consolidation of free storage is cleared.

Error Conditions: DSMU aborts with a message if the storaée type is invalid or if it

is already unlocked.
3.7.3.11 DSMX - Expand a Reserved Block

Purpose: To expand the size of a reserved block, if a free block of the required
size is below and adjacent, or if there is an available free block in the free storage

chain that will satisfy the increased size of the expanded block.

Format: CALL DSMX(USER, TYPE, IDX, MINI, MAXI, LEN)

Arguments:

USER -~ one to six-character name of user requesting expansion.

TYPE - three-character code indicating storage area where block resides (3HGDS
or 3HLDS).

IDX - address relative to /XAN@PP/ of block to be expanded.

MINI - minimum increment of additional storage required by user (must be greater

than zero).
MAXI - maximum increment of additional storage required by user (must be greater

than or equal to MINI).

3.7-20

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

LEN - (OUTPUT) new length of reserved block after expansion. This parameter

is set to zero if expansion was not accomplished.

Description: The DSMX module is called to increase the size of a reserved block
previously reserved via the DSMG module. If there is a free block adjacent and immediately
following the reserved block, then the free block is examined for the minimum/maximum
increment. If the free block satisfies minimum or maximum increment, or a value between

the two, then the reserved block is expanded into the free block below.

1f all of the free block below is required to expand the reserved block, then the
free block is removed from the free storage chain and the reserved block trailer word is
moved to account for the increased size of the block. In addition, the reserved block

size contained in the header and trailer control words is incremented appropriately.

If only a portion of the free block below the reserved block is required for ex-
pansion, then the free block is reduced in size but remains in the free storage chain.
Control words for the expanded reserved block and the reduced free block are adjusted
accordingly. In addition, forward and backward pointers in the free storage chain are

adjusted according to the new start location of the free block.

If there is no free block following the reserved block, or if the free block below
and adjacent is insufficient to satisfy either minimum or maximum increment, then the
storage area is searched for a free block sufficient in size to hold the expanded reserve
block. If such a free block is found to satisfy minimum or maximum or a value between the
two, then the reserved block is relocated and expanded into the free block. The space
allocated for the original reserved block is then freed via DSME. The index contained in

the user's IDX variable is adjusted to reflect the reserved block's new location.

If all attempts to expand the reserved block should fail, then the length parameter
LEN is set to zerc. Otherwise, on return from DSMX, the LEN parameter contains the new

expanded size of the reserved block.

Error Conditions: DSMX aborts with a message if the minimum increment exceeds the

maximum increment, or if either the minimum or maximum increment is negative or zero.

3.7-21

,,,,,

EXECUTIVE MODULES

3.7.4 Auxiliary Modules

A DSM error processor may be called by any one of the DSM modules if an error condi-

tion is encountered during its execution.
3.7.4.1 DSM Error Message Writer (DSMERR)

Subroutine DSMERR (NUM, IVALLl, IVAL2) processes fatal and non-fatal DSM errors. NUM,
the integer number of the error message to be printed, is negative if the error is fatal
and positive if the error is non-fatal. DSMERR prints the informative error message
(indicated by the absolute value of NUM) with the specific value(s) causing the error
condition (indicated by the input values IVALl, IVAL2). If the error is fatal, ANOPP is
aborted by a call to XEXIT. If the error is non-fatal, a traceback is performed to the

user callable DSM module that was active when DSMERR was called.

3.7.5 Hierarchy Charts

A hierarchy chart is a graphical representation of the logical relationships between
modules. Figures 1-9 are the hierarchy charts for the DSM modules and the auxiliary

module.

In general, only DSM modules appear as a block entity in the charts and all DSM .
modules appear at least once. The charts are in alphabetical order with respect to
module name except for Figure 1 which represents the logical grouping of the DSM modules.

A hierarchy chart for the auxiliary is also among the alphabetized charts.

A module which is not part of DSM but is called by a DSM module is not shown as a
block entity, but is listed at the bottom of the chart. The module may be an ANOPP
executive module which is a General Utility or a subprogram provided by one of the CDC
operating system libraries. In either case, the module is of a utility nature and may bé

called many times by various DSM modules.

3.7-22

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

Symbols and headings used in the hierarchy charts are listed below:

NAME
purpose

ANOPP Modules Called:

CDC System Library Subprograms Called:

NAME - module name)
purpose - brief description

Represents logical module not existing as
entity. It is used for logical grouping.

indicates lower level module is called by
higher level module.

implies logical group with no direct
relationship

in upper right corner of module block
indicates module is expanded as a separate
hierarchy.

a list of General Utility Modules called
by the module in this figure.

a list of subprograms called by the module
in the figure and which are not part of ~
ANOPP but are provided by CDC NOS operating
system libraries.

3.7-23 -

EXECUTIVE MODULES

sq Aasnpd
DWsa

T

jaeyp AyoJgeasTH waisAs jusws3euey 38ex03S OoTweuk(

*T auandyg

SHVI

:patTTe) wealoadqng AxeaqrT weIsAS OQD

o911

¢ WIIRSA

:poTTe]) SOTRPOW JJONV

adA] atp3
LINSa
xooTd
a8ea031g sd
=% ET-EN
nvcmaxm xa1 demg saa] o0Tu(asesTay
. XWsa . SHsa NWSa AHSA
T - T T !
| | | |
_ | “ _
e8ea01g _ sa | x2014 | Xoo1d | seTaEpUNOg
8243 o017 | 8ZTTeRTITUT | e 189 | ¥ 3aag | Q7 suTwIs1eq
THSa IKSa _ OWSQ JWsa GRS
% e # R _
S S U S U S R — — 1
_
ﬂ| “weiskgT - 0
| juswsBeuey
I a8eao3ls “
! otweudq |
L -

3.7-24

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

3aey) AYoJeasTH WYIWSQ ¢ °andtd

SHVI
:paTTe) sweaBoadqng Laeaqy weisAS DQD

FOVELX “ANITX ‘LIX3X
1PaTTeD SOTNPOH dJONV

o3essay
Joaad 3Iutad

YIRS

wn
o™
1
o~
(3]

EXECUTIVE MODULES

jaey) AyoaeasTH JWSA

v—UOHm
9aa] JUTTRQ
WIAWSa

xo0Tg
s3a] 3sSJa1d

LSTHSA

_

*g aandry

|
Savl
:patTe) weadoadqns Axeaqrl waisAg 2ad

OPII “WMMIARSA
$pOTTED SIOTNPON dJONV

adAl atpa
LIRS
3014
susoelpy Xar ¢°dAL
asdeTT0) ‘a9sn 3TP3
qyIRSa XNAWSA

]

12014 V
EERE |

JHsd

3.7-26

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

3ooTg 3Isa3dae]

1aey) AysaelaTH SWSA

238ea03g5 934]
23EpPITOSUO)

yo0Td ®{o0Td ¥ooTg AUTTaY
EYS CEEN oT1qESn 199
ASHNSA ATINSA

ﬁl\ anNoOWSa

‘h 8an3TJd

yooTg 2onpay
JQUNST

I

MY

:paTTe) SATNPOH ddPNV

°d4L ate3
L3IWSd

XooTd NUTTRQ
SIANSA

Xo0Td
PAREED
WS

3,7-27

'EXECUTIVE MODULES

3aey) AYoaedaaTH IWSA

‘s 2an3rg

SPIOM TOJIUOD
aZTITeTITUI
SAINSA

sd
SZTTer3iTul

IKSa

IIRSA
IpOITeD S9TNPON JdONV

3.7-28

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

jaeyy AyoaeaaTH TWSQ

‘g aan81g

a8ruao3ls @9aj
83epIToOSuo)
N@OWsa

adAL atp3
LAWSA

[

_

[~ 98BJI03S
oTWeuAq
X201
TRSA

WIIASA
:paTTRD SOTNPOH ddONV

:3.7-29

EXECUTIVE MODULES

aaey) Ayoaesaty dWSA L Sandrg
a8eaols 9aaj Xootg
@1epTTOoOSUO] isedae] purj eddL arpa
NPOWSa 41JHSa L3IWSa
sq Axend

OHSa

IS

{PITTED SITNPAN ddONV

3.7-30

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

3aey) AYoaeadTH SWSQ

ad4l atpd
LInsa

a1 *ediy
‘a9sn 31TP3

XNIHSA

xd1 dems

SKSa

*g 2an31J

OPTI CWYIWSA
1POTTR) SOTNPOH JJONV

3.7-31

EXECUTIVE MODULES

3IeY) AYDJBISTH XWSQ ‘6 9anBrg
SavI
:paTTe) swealoadqng Axeaqi weisds da)
¢ YIIANSA
*POTTRD SOTNPON JJONV
qooTd
paonpay
AUTTaY
ATIHST
20 qo0oTd
A°0TH 99a4 puwuwmv< aAzeSaYy
AUTT3Q esdeTT0) JuBWaISUT adf1 3rp3
ATAWSA dVONSd gJIANST L3NS
L |
AooTg Pvag XaI ®{o0T1d xo01g X1 *edAy
suTWeX] denmg vV 3199 vV 93aj ‘xosn ITpd
8JXHST . SwWsa . 9Wsa , dHsa XNINSa
L { |] |

A20Td
paAaosay
puedxy

XWSa

3.7-32

EXECUTIVE MODULES

3.8 UPDATE
3.8.1 Overview

The ANOPP UPDATE processing phase is invoked by module XCSP during the Control State-
ment Processing Phase (Section 3.5) when an UPDATE Control Statement (CS) is encountered
in the primary or secondary input stream. The UPDATE processor provides a method of
building the members of a data unit by revising existing members of other data units or by
creating new members. The UPDATE CS provides information about the data unit to be changed
(LDU, if applicable), the data unit to be written (NEWU), the source of the UPDATE direc-
tives (S@URCE), and other processing information. UPDATE directives may reside on am
existing user data unit/data member (SPURCE = DU(DM) on the UPDATE CS), in card image
format or they may follow the UPDATE CS in the primary input stream (SPURCE = % on the
UPDATE CS). If the directives follow in the input stream, they are placed on a Uxxx
member (Section 3.4.5) on the EM system scratch unit XSUNIT by module XRT during the
primary edit phase. The UPDATE processor determines where the directives reside (user

member or Uxxx member) and processes them in two major phases, the editing and reformat-

ting phase and the execution phase.

In the editing and reformatting phase, records are read sequentially from the data
member defined by S@URCE until a directive is complete (a $ encountered). The entire set
of directives is edited, although reformatting ceases when an error is encountered. The

steps in editing and reformatting a directive are as follows:

1. The directive is "cracked" by the XCR module to produce a table which includes
every field comprising the directive preceded by an integer type code.

2. The cracked directive is then checked for syntax. If no syntactical errors
are found, the card image(s) comprising the directive, together with the
cracked directive table, is written as one record (a "reformatted" directive)
onto the EM scratch unit XSUNIT, data member UPDATS.

3. If the directive is followed by data records (i.e., -ADDR @LDM=% or -INSERT
FRgM=#), the data records are copied, in card image format, onto the data
unit XSUNIT, data member UFDATS, followed by a null record written to that
member,

4, If the directive is the last record level directive in a set of record level
directives, a null record is written following the reformatted record level
directive on data unit XSUNIT, data member UPDATS.

3.8-1

EXECUTIVE MODULES

EM system control is returned to the module XCSP with the EM system logical error

flag, NERR, set to .TRUE, if errors are encountered during this phase.

If no errors are encountered during the editing and reformatting phase, then the
execution of the directives phase is invoked. In this phase, the UPDATE module, XUP,
sequentially accesses the reformatted directives from data unit XSUNIT, data member UPDATS,

and processes them in a single pass performing the functions indicated by each directive.

When either the last directive has been processed or a processing error is encountered,
control is returned to the module, XCSP, with NERR set accordingly, and the control state-

ment processing phase continues.

3.8.2 Control Statement

Purpose: The UPDATE Control Statement (CS) provides a means of building a data unit
by using an existing data unit as a basis for modifications or by adding members from
various sources with no one data unit as a basis or a combination of both. There are two

UPDATE modes, Revise and Create, depending on the presence of a data unit as a basis.

The UPDATE CS, present in the primary or Secondary Input Stream, supplies required
information for the subsequent processing and allows for selection of various options
available to the user. The building of the new data unit is controlled by a set of UPDATE
directives which may either immediately follow the UPDATE CS in the Primary Input Stream
(Secondary Input Stream prohibited) or be contained in card image record format on a data

member.

There are two types of UPDATE directives, member level and record level. Member
level directives reference a data member to be processed and include -C@PY, -@MIT, -ADDR,
and -CHANGE. Record level directives must follow a member level -CHANGE directive and
reference a particular record(s) to be processed. Record level directives include

-INSERT, -DELETE, and ~QUIT.

The Revise UPDATE mode is invoked when an existing data unit is to provide a basis

for modification, The @LDU parameter on the UPDATE CS specifies the basis data unit.

3.8-2

UPDATE

The -C@PY and -@MIT directives are valid only during Revise mode and they reference data
members on the @LDU data unit. All other directives are also valid during a Revise mode

UPDATE.

The Create UPDATE mode is invoked when there is no existing data unit to provide a
primary basis for modification. The @LDU parameter on the UPDATE CS is omitted. All data
members to be written to the new data unit (with or without modification) will come from
various data units known to the ANOPP run. The -@MIT and -C@PY directives are invalid.

The -ADDR and -CHANGE directives are valid.

No data unit utilized by UPDATE (except the new data unit being built) is altered as
a result of the UPDATE process. The data members residing on the units are sources of
reference only. However the new data unit is always altered as a result of UPDATE. At
the start of UPDATE processing the new data unit is "wiped clean" of any members which
currently reside on the unit (unless the unit has been write-protected via an ARCHIVE CS

in which case an error condition is invoked and UPDATE in inhibited).

Format:
[label] UPDATE [GLDU - dulJ NEWU = du, [ALL;'
v
¢
SPURCE = {du (dm)} [LIST = x[x]] $

label - {optional) label name

@IDU clause - (optional) the presence of the @LDU clause indicates a Revise mode
UPDATE. The data unit name specified by dul, will be used as the basis for
UPDATE processing. Member level and record level directives which allow a
default of @LDU data unit or imply the @LDU data unit, will use dul, as the
required unit. The omission of the @LDU clause indicates a Create mode UPDATE.
Defaults or implications of an PLDU data unit on all directives are invalid in
Create mode.

NEWU clause - du2 is the name of the data unit to be built during UPDATE processing.

It must be known to Member Manager (see Create and Attach CS) and must not be

3.8-3

EXECUTIVE MODULES

write-protected (see ARCHIVE CS). All members existing on du2 will be erased

(i.e., du, will be wiped clean) as if the du2 had been created via the CREATE

2
cs.

ALL - (optional) if present, indicates a full update of the basis data unit (@LDU
parameter) is to be performed. All data members on‘the @LDU data unit which are
not processed by a member level directive will be copied to the NEWU data unit.
A member will not be copied by ALL if the member name is the same as any of the
fellowing:

1. The dm name specifying a member on @LDU in the @LDM clause of the
-ADDR or -CHANGE directive.

2. The ndm name on the -ADD or -CHANGE directive (either explicitly stated
via the NEWM clause or implied by its omission).

3. A dm name on the -C@PY or -@MIT directive.

If ALL is omitted the full update will not be performed for a Revise mode UPDATE.
The ALL field has no meaning on a Create mode UPDATE.

SPURCE clause - the SPURCE clause specifies where the set of UPDATE input directives
will be found. * indicates the directives immediafely follow in the Primary
Input Stream. The use of * is not valid if the UPDATE CS appears in a Secondary
Input Stream (i.e., processed as a result of a CALL CS). The set of UPDATE

directives are terminated by an END# CS.

dug (dma) - specifies the data unit and member containing the directives. dm3 must
contain card image records with 10A8 format (dm3 may have been built previously

via a DATA CS).

LIST clause - (optional) if present, the LIST clause specifies the type of printed

output required from the UPDATE processing.

The list following the = is a sequence of letters specifying the sections of

output desired., The list may be a combination of the following:

Directive Echo Section
Summary Section

CHANGE Members Section
ADDR Members Section

O WnHM
et

3.8-4

UPDATE

An additional Header Section is automatically selected. The printed output for

the various sections is described in Section 3.8.6.

If the LIST clause is omitted only the Header Section is selected.

Examples:
LABL UPDATE NEWJ = Ul, SOURCE = *, LIST = S $
(directive set)
END* $
UPDATE gLDU = UOOl, NEWU = U002, ALL, SPURCE = DU5(M1), LIST = SEA §
UPDATE @LDU = U002, NEWU = ABC, SPURCE = * $

(directive set)

END* $

3.8.3 Member Level Directives

3.8.3.1 General Format

The format of a member level directive is shown below:

directivename field [field ..] $

The directivename is -ADDR, -C@PY, -@MIT, or _CHANGE. A blank separates directivename
from the fields which are dependent upon the particular directivename. Fields are sepa-
rated by a delimiter and may be continued just as in the Control Statement format. The

delimiters are the same as those for contrel statements.
3.8.3.2 -ADDR

Purpose: To add to the NEWU data unit a data member which is found on the @LDU unit,
on a unit other than @LDU, or on card images in the Primary Input Stream. There are two

formats:

Format 1:
_ADDR gLDM =%, NEWM = ndm [,F@RMAT = format} [,MNR=n] $
OLDM clause - * indicates the member to be added is in card images immediately

following the -ADDR directive. It is terminated when. another member level

3.8-5

directive is encountered.

EXECUTIVE MODULES

If the format specified or implied in the F@RMAT

clause is not CI then a $ must terminate each record and the next record must

start on the next card (i.e., characters following the $ on a card are comment).

The $ is not considered part of the record.

If the FPRMAT clause is omitted or

specified as CI, then each record will consist of one card image (10A8) and a $

is not required for record terminatiom.

NEWM clause - ndm specifies the name of the data member added to the NEWU data unit.

It must not be the name of a member on NEWU as a result of a previous directive.

F@PRMAT clause - (optional) indicates the format of the member, ndm. Format may be

one of three forms:

1. 0 - indicates unformatted.

The characters on the card(s) will be interpreted and converted as

types I, RS, RD, CS, CD, L, and a Hollerith string of type Ai. The

converted fields will be written to member ndm as unformatted.

2. anl.

-1

- indicates fixed or variable length format.

The character string (Cl"'cn—l) describe the format of the records to be

written to ndm.

The fields on the cards will be interpreted and converted

as types I, RS, RD, CS, CD, L and Hollerith character string type Ai. The

correspondence between the type field specified on the format and the card

image field is given below,

Control Statements.

The card image fields are as described for all

format description card image number words written
code field (S) to record
I integer I 1
RS real single RS 1l
precision
RD real double RD 2
precision
Cs complex single two successive 2
precision RS fields
ch complex double two successive 4
precision RD fields

3.8-6

UPDATE

Each element code is separated by a comma. A multiplier may optionally

precede parentheses enclosing a single element or a group of elements. The
multiplier specifies the number of times the element(s) are to be repeated.
The character * may be used as an indefinite multiplier when preceding the
last element(s) of the format. The * specifies an indefinite repeat of the

element group.

A fixed length format results when the format does not contain the
indefinite multiplier (%). Each record will be of the same length de-
termined by the format. A variable length format results when the format
includes the indefinite multiplier (®). The records are variable length
depending on the number of elements written which may or may not include

the indefinite repeat group in whole or in part.

3. JHCI - indicates the card images following should not be interpreted and
converted but instead written directly to member ndm, which will have a
card image format.

~he formats resulting from 0 or nH--- or 2HCI are identical
to Member Manager (MM) formats (except MM requires a terminating $) and the
sections describing MM should be referenced for further description. If

the FPRMAT clause is omitted, then F@RMAT = 2HCI is assumed.

MNR clause - (optional) indicates the maximum number of records that ndm may contain.
n is an integer specification.
I1f the clause is omitted, the executive system default for Member Manager is
used (10,000 currently).

Example 1:

_ADDR QLDM = %, NEWM = M1, MNR = 3 S

RECORD 1 WILL BE THIé CARD

RECORD 2 WILL BE THIS CARD

RECORD 3 WILL BE THIS CARD

3.8-7

EXECUTIVE MODULES

- (next directive)

Result: Member Ml has CI format and contains three records.

Example 2:

-ADDR @LDM = %, NEWM = M2, FPRMAT = 20HI,2RS,A9,RD,CS,L,CD$, MNR = 2 $
1 1.5 2E401 9HABCDEFGHI 3D-01 1.5 2.0

.TRUE. .5D+00 -.841D-06 §

11 .5 -.696E-110 9H123456789 10.5D401

.696E+29 .32E+31 .FALSE. .919D+01 .210D+06 $

~ (next directive)

Result: Member M2 has fixed format (I,2RS,A9,RD,CS,L,CD) and contains two
records of length 14.

Example 3:

-ADDR @LDM = %, NEWM = M3, F@RMAT = 0 $
.693 §

.70D+01 .898D+20 .TRUE., 3HABC $

10 20 30 §$

- (next directive)

Result: Member M3 is unformatted and can have a maximum of 10,000 records but actually
contains three records as follows:

Record 1 is 1 word long (one floating point RS)

Record 2 is 6 words long (two floating point type RD, a logical .TRUE., one
word containing string ABC left justified and blank filled)

Record 3 is 3 words long (three integers type I)

Format 2:
-ADDR @LDM ={§; (dm)} ,NEWM=ndm §

@LDM clause - indicates where the member to be added is found. du(dm) specifies the
unit and member name. du may or may not be the name of the unit named as the
@LDU unit on the UPDATE CS. If du is omitted, the unit name& as @LDU is assumed.
The new ndm member will be identical to the member named in the SPURCE clause.

dm and ndm may or may not be the same name.

3.6-8

UPDATE

NEWM clause - (optional) ndm is the name of the data member added to the NEWU. If

the clause is omitted the name dm specified in the @LDM clause is used for ndm.

Examples:

_ADDR @LDNM = UNITL (MEMA), NEWM=Ml §
~-ADDR QLDM = MEMS, NEWM=MZ §
~-ADDR @LDM = M3 $

3.8.3.3 -C@PY

unit.

Purpose: To copy *o the NEWU cdata unit one or several data members on the @LDU data

Format:

-cgPY dm [.am ...) S

dm - name of the data member residing on @LDU to be copied to NEWU. dm must not be
the name of a member already written to NEWU as a result of a previous member
level directive.

Examples:

_CPPY ABC, M1, MEMB, D1 S

-CPPY XYZ ¢

3.8.3.4 -@MIT

Purpose: To omit the copying of one or several data members on the @LDU data unit to

the NEWU data unit during processing of the ALL UPDATE CS option.

Format:

-gMIT dm [,dam ...] $

dm - name of the data member residing on @LDU to be omitted as a copy possibility
during ALL processing.

Examples:

-gMIT ABC, MEM1, MEM2, MEM5 $

-gMIT MEM1O $

3.8-9

EXECUTIVE MODULES

3.8,.3.5 -CHANGE

Purpose: To change a data member on either the @PLDU data unit or another data unit
via record level directives which follow the -CHANGE directive and to write it on the NEWU
data unit with rename capability.

Format:

du{dm)

i } [, NEWM=ndm] [,MNR=n]$

-CHANGE ¢LDM={

@LDM clause - specifies the data member to be changed.

du(dm) - specifies the data member to be changed. Data unit du may be the unit
named as @LDU on the UPDATE CS. dm with du omitted specifies the data member
which resides on the @LDU data unit to be changed. In either case, the data
member, dm, is referenced on the record level directivgs as dLDM.

NEWM clause - (optional) ndm is the name to be given to the member written to NEWU,
If the clause is omitted then the name dm specified in the @LDM clause is used.

MNR clause - (optional) specifies the maximum number of records the member ndm will
contain (regardless of the number of records contained on the @LDM member). If
omitted, the MNR used in creating OLDM will be used with a possible increment as

explained below.

NRECO = current number records on @LDM
MNRO = MNR used when #LDM was created
MNR = MNR to be used in creating ndm.
ndm

IF (NRECOS. .95 % MNR)
THEN MNRndm = MNRO

= %
ELSE MNRndm l.1 MNRO

Usage: Record level directives immediately follow the -CHANGE directive and direct
the altering or changing of the @LDM member. Processing of the -CHANGE terminates when
either another member level directive or the end of the input set of directives to the

UPDATE CS is encountered.

3.8-10

UPDATE

Examples:

~-CHANGE @LDM=M1, NEWM=M2 $
{(record level directives)

—-(Member level directive)

-CHANGE @LDM=UN1(lZEM),MNR=2000 $

(record level direative)

3.8.4 Record Level Directives

3,8.4.1 General Description

The format of a record level directive is shown below:

directivename field [field ,..] $

The directivename is -INSERT, -DELETE, or -QUIT. A blank separates the directivename from
the fields which are dependent upon the particular directivename. Fields are separated by
a delimiter and may be continued just as in the Control Statement format. Delimiters are

the same as for the Control Statement Format.

Throughout record level directives operands 1 and j are used as pointers to relative
record positions in the old member. Record level directives must be processed sequenti-
ally with respect to i and j. This is necessary because the new member is created in one
pass. So, a directive referencing records 5 through 8 (il through jl) must be called
before a directive referencing records 9 through 10 (12 through j2) and never vice versa.
The i value (if present) in any directive must be greater than the i (and j if present)

specified in the preceding directive as noted in each of the following directives.

3.8-11

EXECUTIVE MODULES

This is accomplished by an old member reference pointer, P, which is initialized to
zero at the beginning of the CHANGE processing. The i value specified on a record level
directive must be greater than P. Upon completion of the directive P assumes one of the

following three values:

1. the j value (if present)
2. the i value (j not present, i present)
3. unchanged (i and j not present)

The next record level directive must have an i value (if present) greater than the
new value of P. The i parameter may be omitted on the -INSERT and -QUIT directives as

described in the following sections.

The -INSERT, ~DELETE, and -QUIT record level directives are processed under control
of the preceding -CHANGE member level directive. The -CHANGE directive is in control
until another member level directive or the end of the input SOURCE is encountered. If
a -QUIT is encountered, processing of the member being CHANGEd is terminated according to
the -QUIT specifications. If a -QUIT is not present and the -CHANGE is terminated by
encountering a member level directive or the end of the inputbstream, then the member
being CHANGEd is completed as follows. Any records remaining on the old member following
the reference pointer P will be copied to the new member. (i.e., records P+l through the

last record on @LDM are copied to the new member). The new member is then closed.

3.8.4.2 -INSERT

Purpose: To insert one or more records intoc a data member being changed.

Format:

~INSERT [i] [FR¢M={ 3LDM}] [(m [,n])] $

i - the record after which the specified records will be inserted. i must be greater
than the old member record pointer (P). Records P+l through and including

record i will be copied to the new member followed by the inserted records.

The i may be omitted in which case the records are inserted immediately
onto the new member and P remains unchanged. Thus records may be inserted at

3.8-12

FROM

UPDATE

the beginning of the member (when P=0) if -INSERT with i omitted is the first

directive following the CHANGE.

clause - the FRPM clause specifies the source of the records to be inserted.
FRPM=* indicates the records to be inserted immediately following the INSERT
directive. FRPM=@LDM indicates the member named as @LDM on the CHANGE directive
contains the records to be inserted. The entire FR@M clause may'be omitted, in
which case FRPM=%* is assumed. The FR@M=* clause is valid in the Primary or

Secondary Input Stream.

If the format of @LDM is unformatted, fixed, or variable then a $ must terminate

each input record and the next record must begin on a separate card image.

{(m,n) - specifies which records on the @LDM are to be inserted. It is ignored if

FRPM=* is present. Records m through n will be inserted (n= m=1). n may be
omitted and, if so, m = n is assumed. The RECPRDS clause may be omitted and if
so, all of the records on @LDM will be inserted. Records which follow immedi-

ately in the input stream are card images. If the format of @LDM is card image

{2HCI used when created via UPDATE ADDR) then each card image is ccpied directly

“to ndm as a record.

After processing an -INSERT, the record pointer in the @LD member points to
record i if i is present. If i is not present then the old member record

pointer is unchanged.

Example 1:

Assume N1 is a member on the @LDU data unit and contains 1000 card images, perhaps

built via a DATA CS. Then to insert two card images following the sixth record on

N1 the following is required:

~-CHANGE @LDM = N1 $

-INSERT 6 $

(card image)

(card image)

-(next member level directive)

- 3.8-13

EXECUTIVE MODULES

Example 2:
The following directive copies records 1 through 5 from the old member and inserts
them after record 6 of the old member.

-INSERT 6, FROM=@LDM (1,5) $

Example 3:

Assume the @LDU data unit is UN1 and contains member MEM which consists of 2000
records. MEM was created with a maximum record number (MNR) of 2010 records. The
new member on NEWU is to be named MEMNEW. To copy records 5 through 10 from MEM to
the beginning of the new member and copy (without altering) the other records in MEM,
the following sequence may be used.

-CHANGE @LDM = MEM, NEWM = MEMNEW, $

-INSERT FRPM = QLDM (5,10) $

-(next member level directive)

Example 4:

Assume the name as Example 3 except records 5 through 20 are to be inserted. This
would result in 2016 records on MEMNEW but the automatic expansion algorithm for
MNR is sufficient therefore the following is used:

-CHANGE @LDM = MEM, NEWM = MEMNEW $

-INSERT FR@M

gLDM (5,20) $

-(next member level directive)

ExamEle 5:

Assume the same as Example 3 except records 5 through 205 are to be inserted.
The automatic expansion algorithm will result in 2100 which is insufficient for
the MEMNEW of 2201 records. Therefore MNR must be specified.

-CHANGE ¢@LDM = MEM, NEWM = MEMNEW, MNR = 2500 §

3.8-14

UPDATE

3.8.4.3 -DELETE

Purpose: To delete records on the member being changed.

Format:

-DELETE i [,3] $

i,i - i and j specify the range of records to be deleted (P< i< j) where P is
the old member record pointer. Records P+l thru i-1 (p<{i) on ¢LDM are copied
to the new member. The records i thru j are effectively deleted by setting P to

the value of j.

% may be omitted which results in the one record i being deleted (same

-

as i = 3).
Example:
~-CHANGE @LDM = JET $ At initialization record pointer P set
to zero. (P=0)
-DELETE 4,6 S Records 1,2,3 copied to new member; 4,5,6
skipped. (P=6)
-INSERT FROM=PLDM (12,13) $ Records 12 and 13 are copied from old member
onto new member after current position of
P which is 6. (P unchanged)
~-DELETE 9,10 Records 7 and 8 are copied from old member
to new member; 9,10 skipped. (P=10)
01d Member New Member
Rec 1 Rec 1
Rec 2 Rec 2
Rec 3 Rec 3
Rec & Rec 12
Rec 5 Rec 13
Rec 6 Rec 7
Rec 7 Rec 8
Rec 8
Rec 9
Rec 10
Rec 11
Rec 12
Rec 13
Rec 14

3.8-15

EXECUTIVE MODULES

3.8.4.4 -QUIT

Purpose: To terminate processing of the member being altered via the -CHANGE direc-

tive after a specified record.

Format:

-QUIT [1] $

i - (opticnal) specifies the record with which to terminate processing. All records
from the current position of the record pointer plus one through record i are
copied onto the new member. Record i will be the last record copied to the new

member.

If i is omitted processing on the new member is terminated immediately.
The -QUIT directive, if present, must be the last record level directive under

the control of the -CHANGE directive.

3.8.5 TFormat Summary

The following is a summary list of valid formats for the UPDATE CS and the UPDATE

Member level and Record level directives:

UPDATE CS

%
[label] UPDATE [GLDU = du ,] NEWU = du,, [ALL,] SOURCE ={ (dm)} [LIST= x Ec]}3
1 2 dua 3

Member Level Directives

0
-ADDR @LDM=%*, NEWM=ndn [,F(JRMAT= 3:11{...55]'[,MNR:n] $
2HCIS

du(dm)}
-ADDR (JLDM:{dm [,NEWM=ndm] $

~-C@PY dm [,dm :l $

-@MIT dm Edm ..{] $ 4

~CHANGE ¢LDM={gTun(dm)} [,NEWM=ndm] [,MNR=n] $

3.8-16

UPDATE
Record Level Directives

-1nserT [] [FROM= { ;LDM}] [(m,n)] $

-pptete i [Li] 8

~quir [i] $

3.8.6 UPDATE Output Description

3.8.6.1 HEADER SECTION
UPDATE, PROCESSING BLGINNING WITH THE FOLLOWING PARAMETERS

CREATE
MODE New Data Unit = NAME (A8) 01d Data Unit = NAME (A8)

REVISE

’

PRIMARY INPUT STREAM LIST=SEAC
SQURCE OF UPDATED DIRECTIVES IS
DATA UNIT NAME (AB), DATA MEMBER NAME (A8)

3.8.6.2 DIRECTIVE ECHO SECTION

(all card image directives on S@URCE data member or % are listed in 10A8 format)

EDITED CARD IMAGE '

NOTE - entire Directive Echo is printed prior to any processing.

3.8-17

EXECUTIVE MODULES

3.8.6.3 SUMMARY SECTION

UPDATE PROCESSING SUMMARY

NEW DATA UNIT = NAME (A8)
MEMBEPR NUMBER OF RECORD TYPE MAXIMUM RESULT OF
NAME RECORDS LENGTH
Name (A8) (13) cI (I14) -ADDR
-CHANGE
-C@gPY
-ALL

TOTAL OF (I5) MEMBERS ON NEW DATA UNIT

3.8.6.4 CHANGE MEMBER SECTION

DATA UNIT = NAME (AB) DATA MEMBER = NAME (A8) FORMAT =3gg§gg;A;§ggE$
RECORD
1 card image record (10A8) if CI
' OR
octal record (5@23) multiple
n
(17) one line of (10AB) or multiple lines of 5@23.

NOTE: The member written to the new unit is listed upon completion of the CHANGE Directive.

- 3.8-18

UPDATE

3.8.6.5 ADDR MEMBER SECTION

DATA UNIT = NAME (AB) DATA MEMBER = NAME (A8) FORMAT = 352?22§A$¥23E$
RECORD
1 card image record (10A8) if CI
OR
octal record (5@23) multiple print lines
n
(17) one line (10A8) or multiple lines (5@23)

NOTE: The member is listed upon completion of the ADDR Directive.

3.8-19 -

EXECUTIVE MODULES

3.8.7 Error Philosophy

The set of UPDATE member level directives, contained either on the SOURCE data member
or in the Primary Input Stream, is executed sequentially beginning with the first direc-
tive. If no error occurs in the sequential processing, UPDATE terminates normally when
execution of the last member level directive in the directive set is complete. However,
if an error is encountered while processing any member level directive or any record level
directive under the contrel of a member level directive (i.e., -CHANGE), then further

UPDATE processing is inhibited and UPDATE is terminated.

Upon UFDATE error termination the NEWU unit contains all members written as a result
of the previous member level directive which executed successfully. If the error occurred
during execution of a record level directive and the member has been partially written as
a result of immediately preceding successful record level directives then the partially
complete member is considered complete and will be present on NEWU. A partially complete
member is the result of the -CHANGE directive being terminated by a record level directive
error. The contents of the‘NEWU unit will be reflected in the summary section which is

printed upon error termination if selected via the LIST field on the UPDATE CS.

Errors may be detected in UPDATE processing during one of two phases, the edit phase

or the execution phase.

During the edit phase, the set of UPDATE member level or record level directives
contained either on the SPURCE data member or in the Primary Input Stream is edited for
syntactical errors. The directives are read and checked sequentially, beginning with the
first directive in the set. If a directive is syntactically correct, it is then stored in
an executable format, known internally to UPDATE. If no error is detected on any UPDATE
directive during the edit phase, the entire reformatted set of directives will be input to

the execution phase.

If an error is detected on an UPDATE directive during the edit phase, the remainder
of the directives in the set will be checked for syntax, but will not be reformatted for

execution. The directive(s) in error will be printed, and UPDATE will terminate following

3.8-20

UPDATE

the edit phase if any error in syntax is present in the set of directives. The following
errors include conditions which would result in an edit phase error and inhibition of

execution processing.

1. Required field missing - for example, the @LDM clause is not present on an
~ADDR directive.

2. Invalid field type - for example, on the -ADDR directive the F@RMAT clause is
present and contains F@RMAT = 10A8.

3. Incomplete directive - for example, -@MIT $ which contains no dm fields.
This is similar to required field missing.

4. Invalid directive name - for example, a mispunch resulted in the directive
-C@PI DM §.

During the execution phase, the reformatted set of syntactically correct UPDATE
directives are executed sequentially beginning with the first directive. If no error
occurs in the sequential processing, UPDATE terminates normally'when execution of the
member level directive in the directive set is complete. However, if an error is en-
countered while processing any member level directive or any record level directive under
the control of a member level directive (i.e., -CHANGE) then further UPDATE processing is

inhibited and UPDATE is terminated.

Upon UPDATE error termination the NEWU unit contains all members written as a result
of the previous member level directive which executed successfully. If the error occurred
during execution of a record level directive and the member has been partially written as
a result of immediately preceding successful record level directives, then the partially
complete member is considered complete and will be present on NEWU. A partially complete
member is the result of the -CHANGE directive being terminated by a record level directive
error. The contents of the NEWU unit will be reflected in the summary section which is

printed upon error termination if selected via the LIST field on the UPDATE CS.

The types of errors which may cause UPDATE error termination are varied. Some error
types are specific to a particular directive being executed while other error types are
general and apply to all directives. Directive errors are implied by the requirements for

each particular directive. The general errors include duplicate member attempted on

3.8-21

EXECUTIVE MODULES

NEWU. This error is emphasized and provides the basis for handling conflicting direc-
tives. The general conflict rule for executing successfully the set of UPDATE directive
is as follows: '"there shall not be an attempt to write on the NEWU unit a data member
which has the same name as a data member previously written on the NEWU." There is no
restriction as to how many times a particular du(dm) may be used on the various directives
as long as the resulting member to be written on the NEWU is not the name of a member
already residing on the NEWU. UPDATE will not attempt to overwrite members on NEWU. Since
NEWU either contains no members upon entry to the UPDATE CS processing phase or is "wiped
clean" before UPDATE directive processing begins, the conflict rule is violated only by an
incompatible set of directives and not because of the contents of NEWU upon entry to
UPDATE processing. The following directive sequence is compatible since the -@MIT directive
does not result in a member being written to NEWU. The -@MIT directive has no meaning,
however since the -ADDR directive would eliminate the possibility of DM2 (if present on
the designated @LDU) being written to the NEWU Auring ALL processing.

-@MIT DM2 S

-ADDR SQURCE = *, NEWM = DM2 §

Also compatible is the following sequence:

-gMIT DML $

-C@PY DM1, DM3 $

-@MIT DM3 $§

~ADDR S@URCE = DM6, NEWM = DM7 $

-C@PY DM6 §

-CHANGE @LDM = DM6, NEWM = DMB8 §$

The following sequence results in a conflict error:
~CHANGE @LDM = DM3, NEWM = DM10O

-C@PY DM1O $

- 3.8-22

UPDATE

3.8.8 Auxiliary Module

An auxiliary module performs a function common to UPDATE modules and is available for

use only by UPDATE mocdules.

3.8.8.1 UPDATE Error Message Writer (XUPERR)

Subroutine XUPERR (NM, CNAME, VAR1, VAR2) processes fatal and non-fatal errors for
the UPDATE modules. NM, the integer number of the error message to be printed is negative
if the error is fatal and positive if the error is non-fatal. XUPERR prints the informa-
tive error message indicated by the absolute value of NM with the name of the calling
module (CNAME) and specific value(s) involved in the error condition (VARLl, VAR2). If the

error is fatal, ANOPP is aborted by a call to XEXIT.

3.8.9 Hierarchy Charts

A hierarchy chart is a graphical representation of the logical relationship between

modules. Figures 1 through 6 are the hierarchy charts for UPDATE.

In general, only UPDATE modules appear as a block entity in the charts and all UPDATE
modules appear at least once. A module which is not part of UPDATE but is called by an
UPDATE module is not shown as a block entity but is listed at the bottom of the chart.

The module will be an ANOPP executive module which is part of the Data Base Management
System (DBM), the Dynamic Storage Management System (DSM), or the General Utilities, is of

a service or utility nature, and may be called many times by various UPDATE modules.

Symbols and headings used in the hierarchy charts are given below:

NAME NAME - module name
purpose purpose - brief description

indicates lower module is called by the
higher module.

: in upper right corner of module block indicates
* module is expanded as a separate hierarchy.

3.8-23

EXECUTIVE MODULES

ANOPP Modules Called: a list of DBM, DSM, and General Utility
modules called by the modules in this figure.

CDC System Library Subprograms Called: list of subprograms called by the module
in the figure and which are not part of
ANOPP but are provided by CDC NOS operating
system libraries.

3.8-24

UPDATE

jaey) AyoaedatH dNX

*1 8an3dtg

WIIINX “MdNNX ‘AITIX
CANITIX ‘0dVTIdX ‘gvidx ¢19vdX © LYdWX
CIAPRX ‘OLWJX “QWELOX “4OX ‘dALAMN
CHOARK QWHOWH ¢ ANSKHH AW CMLOdRKH
CYLAAN OMdOWW * QAdPHR COMPINW MLIIIW
‘gIIOWH “gJIIRN “WNTIHK COWPAWAd “SITOHN
¢XWsa ‘NWSAa “HSa ¢ 9Rsd ¢INSa
:peTTe) S8TNPOH JdONV
I04NgS np MaN suoT3dQ spTatd
itpd arpd 2ZTTRTITU] a3BpTTOSU)
24SdNX M3ANdNX 157d0X agdnx
wn
™~
)
[+2]
wp wp S8AT308aT(a) up LRN ©L np My oL g
JaFsued] daJsued] XMPC.%w 21epTIrA Jejysued], wp PW JaJsued],
L ddxdox | EIXdnX . Nisdnx s24nx , 4Ixdox LHNAOX AIXINX
i 4) "
2d@o- TV TONVHO- S0 dLvddn UoT3038g Burssedoag Jaqv- LING-
ss9004g ssao0ad sseo0dd s$S920ud Aaewung 1s0d SS900dd ssadald
atup
eieq Moy
aonpoayg
dnx

L PAGE 15
. QUALITY,

ORIGINA
OF POOR

EXECUTIVE MODULES

12ey) AYdJRJIeTH OHIANX ‘T @andid

IINX “AITIX CANITAX
¢ LYY “IAPHX “OLNdX ‘9ox “dALamn
CMIYWR “MLOARW “HLNdWH *NS@IHR *OMJOWR

‘QUdORN “MLIOWW “HIIOWR “WNGIHW SPTORN
* XHSd NHSa *IWSa) ¢ INST

:paTTed SaTNPOW d4ONV

SPTaTd np np np
93epITosuo) ol Adop ol 4Adop o] 4do)p
4@0dnx d49d4NX AdOdNX | AdOdNX
np MaN oL wp urp wp np
J93suea], ol Ado) ol 4do) ol &Kdop o], Adop
doXdnx d93dnX d90dNX d90dNX ¥dodnNx
IHN ©L LY3ISNI~- d13713a- 11nd- wp
up ppv ssadoad ssanoad ssad01d o] 4dop
LANdOX NIDJdNX La2dNX L02dnx d92dnNX

JONVHO-

ssad0ad
OHOdNX

3.8-26

UPDATE

jaey) AyodeasTH ¥¥IdNX '€ oan3TJd

Savl
:paTTe) sweaBoadqns Aaeaqri welsAs 240D

ANITEX ‘HOLZIX ‘1IXIX “INTVAY
{PITT®D SSTNPOH dJONV

SJ0JaT
ayepdn
ssadoad
dd3dNX

3.8-27

EXECUTIVE MODULES

1aey) AysaedsTH SNIINX

*f a2an3dTJ

ANITAX SMOX CdINSHH “UINAWW “YIIOWH

$9ATID94T(§3AT393410 seBeu] pae
19a07 J9quel T2A87 PIOO=Y I BaR0
109134 10838(ou>d
ATRANX ATIdNX 103d0X
Joquay OL

so8ewy £do)
SNIdNX

:paTTR) SATNPOH JJONV

3.8-28

jaey) AyoaeaoTH NASAAX ‘G andld

WK “INITX Rt 10) ¢
CIALAMN CWOAHH “dINSNH “MINWW ‘ AJPHW
QIAGHA “MLIOWH ° SPTORH *SHSa ¢ msd

UPDATE

:paTTe) SRTNPOR ddONV

se8eul po93ITPg so8ew] pa3itpd sa3ew] polTpd
oyog oyog oyog
J0340X 323dNX 303dNX
2AT3IDAJT
313740~ 1IN0~ JONVHO- L¥ISNI- Hw>wmuhmAEmz Jaqueiy Of aivadn sedew] palTpld
RBIUAS xeiuls xelUuls 1091090 sadewy Ado) xoea)/peay oyog
adodanx XH34NX IHOANX SNIdNX ¥I1adnx 403d40X
ATRANX 3
sadew] pe3Tpd sofew] pa3ITpld o8eur polTPI | aequel oL
oyog oyo3 oyog3 sa8ewy Ado)
303dNX 334X IIANX «mszDx
Ad@0-
peileudoray JONVHO- sadew] polTpd LIAg- ILvadn Jaav-
xeIUuls XBIUAS oyoq Xe3luksg Noea)/pesy XBIUAS
S@OdNX SHOdNX 303dNX SH@dNX dIddnX SaAvdnx
I
SBAT108aT(]
ILvadn
XPluig
NASdNX

3.8-29

EXECUTIVE MODULES

3aey) AYoIRIDTH YINIOX

up MmN
ol 4Adoj
qdodnx

*g 2and1j

*AMdORH

*XHSa

IWN ©L
up ppv
LHNJNX

np ol wp
ae Jsueal
HIXdNX

CMLNGW
¢ SPIOWH
¢ Hsa

(pATTRD S8TNPOH ddONV

-3,8-30

EXECUTIVE MODULES

3.9 GENERAL UTILITIES

3.2.1 Overview

General Utilities are general purpose subprograms available to all executive system
modules. Some resulted during executive system development from the recognition of
functions common to several modules. Others are required to replace CDC Fortran intrinsic
functions which are NON-ANSI. Most of these utilities are available for use by functional
modules. A few subprograms, classed as utilities but not available to the functional
modules, are specific to executive system philosophy and design criteria and do not

provide the functional module with increased capability.

3.9.2 Reference List

3.9.2.1 ALPHA

Subprogram Type: Logical Function

Calling Sequence: ALPHA(CHAR)

Purpose: Return a function value of .TRUE. if input character, CHAR, is alphabetic.

Otherwise, return a function value of .FALSE.
3.9.2.2 DIGIT

Subprogram Type: Logical Function

Calling Sequence: DIGIT(CHAR)

Purpose: Return a function value of .TRUE. if the input character, CHAR, is alpha-

betic. Otherwise, return a function value of .FALSE. .

3.9.2.3 DVALUE

Subprogram Type: Double Precision Functicn

Calling Sequence: DVALUE(RS)

Purpose: Enable the use of any mode variable, RS, as if it were double precision

with no conversion.

23.9-1

EXECUTIVE MODULES

3.9.2.4 TIAND

Subprogram Type: Integer Function

Calling Sequence: IAND(I,J)

Purpose: Perform logical product of the two input words I and J.
3.9.2.5 ICD

Subprogram Type: Integer Function

Calling Sequence: ICD(I)

Purpose: Return the integer value which corresponds to the input character I, a

valid numeric character (Al) in the range 0-9.
3.9.2.6 ICI

Subprogram Type: Integer Function

Calling Sequence: ICI(I)

Purpose: Return the numeric character (Al) which corresponds to the input variable

I, a valid integer in the range 0-9.
3.9.2.7 ICOMPL

Subprogram Type: Integer Function

Calling Sequence: ICOMPL(I)

Purpose: Return the complement of the input variable I.

3.9.2.8 IDATE

Subprogram Type: Subroutine
Calling Sequence: CALL IDATE(D)

Purpose: In the output variable D, return the current date in the A8 format MM/DD/YY.

3.9-2

GENERAL UTILITIES

3.9.2.9 1ILOC

Subprogram Type: Integer Function

Calling Sequence: ILOC(I)

Purpose: Return the integer index relative to /XANOPP/, the dimensional array to

which all Dynamic Storage addresses are indexed, of input variable I.
3.9.2.10 ILSHFT

Subprogram Type: Integer Function

Calling Sequence: ILSHFT(I,J)

Purpose: Left shift with zero f£ill the contents of the input word I by J bits. J

must have a value in the range O-number of bits per word.
3.9.2.11 IMASK

Subprogram Type: Integer Function

Calling Sequence: IMASK(I)

Purpose: Form a mask of I high-order bits. I must have a value in the range 0O-

number of bits per word.
3.9.2.12 1IOR

Subprogram Type: Integer Function

Calling Sequence: IOR(I,J)

Purpose: Perform a logical sum of the two input words I and J.
3.9.2.13 IRSHIT

Subprogram Type: Integer function

Calling Seguence: IRSHFT(I,J)

Purpose: Right shift with zero fill the contents of the input word I by J bits. J

must have a value in the range O-number of bits per word.

»3.9-3

EXECUTIVE MODULES

3.9.2.14 ISHIFT

Subprogram Type: Integer Function
Calling Sequence: ISHIFT(I,J)

Purpose: Perform a left circular shift (J.GT.0) or right, end-off, sign extend shift
(J.LT.0) of the input word I by J bits. The absolute value of J must be less than or

equal to the number of bits per word.
3.9.2.15 ITIME

Subprogram Type: Subroutine

Calling Sequence: CALL ITIME(T)

Purpose: In the output variable T, return the time of day in the AB format hh.mm.ss.
3.9.2.16 1IVALUE

Subprogram Type: Integer Function

Calling Sequence: IVALUE(I)

Purpose: Enable the use of any mode word, I, as if it were an integer with no

conversion.
3.9.2.17 IXOR

Subprogram Type: Integer Function

Calling Sequence: IXOR(I,J)

Purpose: Perform an exclusive OR of two input words I and J.
3.9.2.18 MEMNUM

Subprogram Type: Integer Function

Calling Sequence: MEMNUM(IN)

Purpose: Convert the three numeric characters in the input word IN to an integer
value in the range 0-999. 1IN is expected to be in the form Axxx (A4) where A is an

alphabetic character and xxx are numeric characters in the range 001-999.

3.9-4

GENERAL UTILITIES

3.9,2.19 NUMTYP

Subprogram Type: Integer Function

Calling Sequence: NUMTYP(NAME)

Purpose: Return the integer type code corresponding to the input alpha type code for
an ANOPP data type. For a full description of ANOPP Data Types, see the NDTCL array in

common block /XCVT/.

3.9.2.20 NWDTYP

Subprogram Type: Integer Function

Calling Sequence: NWDTYP(ITYPE)

Purpose: Return the number of words required for an ANOPP data type given the

integer type code. For a full description of ANOPP Data Types, see the NDTCL array in

common block /XCVT/.
3.9.2.21 RVALUE

Subprogram Type: Real Function

Calling Sequence: RVALUE(R)

Purpose: Enable use of any mode word, R, as single precision withcut conversion.

3.9.2.22 XASKP

Subprogram Type: Subroutine

Calling Sequence: CALL XASKP(PNAME, ITYPE)

Purpose: Determine if the input variable PNAME, (A8), is a current User Parameter,
and, if it is, return the integer type code of the ANOPP data type in the output variable
ITYPE. If PNAME is not a current User Parameter, a zero is returned in ITYPE. A User
Parameter is a numerical, logical, or character string value established in the control
statement stream by a PARAM CS or in a functional module with XPUTP. This value is main-

tained throughout ANOPP in the User Parameter Table (UPT) and User String Table (UST) and

may be changed or retrieved.

EXECUTIVE MODULES

3.9.2.23 XBSRIN

Subprogram Type: Subroutine

Calling Sequence: CALL XBSRIN(JXX,JX,NEL,INDEX,IFND,IERR)

Purpose: Performs a binary search for integer Jxx in array Jx.
3.9.2.24 XBSKRD

Subprogram Type: Subroutine

Calling Sequence: CALL XBSRRD(DXX,DX,NEL,INDEX,IFND,IERR)

Purpose: Performs a binary search for real double DXX in array DX.
3.9.2.25 XBSRRS

Subprogram Type: Subroutine

Calling Sequence: CALL XBSRRS(RXX,RX,NEL,INDEX,IFND,IERR)

Purpose: Performs a binary search for real single RXX in array RX.
3.8.2.26 XCR

Subprogram Type: Subroutine

Calling Sequence: CALL XCR(BIN,NC,OUTBUF ,LAVAIL,LUSED,ICONT,NBAD,IERR,NF)

Purpose: XCR is the executive crack module which identifies ANOPP Data Types on a
card image and converts these fields as required to numerical representations. The
converted fields are represented in table form via the OUTBUF array. There is one entry
in OQUTBUF per field encountered except for blanks and commas which are recognized as
delimiters but not entered into the table. The table entries are variable length. The
first word of each entry contains the integer type code of the ANOPP data type that
follows. The value length is implied by the type code. Fields recognized by XCR for
output are Integer, Real Single Precision, Real Double Precision, Hollerith String or
Alpha, Logical Operator, Name, Type A Delimiter, and Unrecognizable. The integer type
codes and the corresponding value lengths are found in the ANOPP Data Types Table (array
NDTCL in common block /XCVT/). The fields as they appear on a card image along with the

output integer type codes and value lengths required are shown in Table 1.
3.9-6

GENERAL UTILITIES

ANOPP DATA INTEGER CARD IMAGE OUTBUF OUTBUF VALUE
TYPE TYPE CODL FORM VALUE FORM WORD LENGTH
INTEGER 1 NNNN...N BINARY 1
OPTIONAL + - INTEGER
.LE. 18 DIGITS
LLE. (2%%31)-1
REAL 2 N. BINARY 1
SINGLE N.NN FLOATING
PRECISION N.NN+N N.NN-N POINT
N.NNEN
NEN
NE+N NE-N
.LE. 14 DIGITS
.GE. 10%%-293
LLE. 10%%4+322
OTIONAL + -
REAL 3 N.NNDN BINARY 2
DOUBLE N.NND+N N.NND-N FLOATING
PRECISICN NDN POINT
ND+N ND-N
OPTIONAL + -
.GE. 10%%-293
LLE. 10%#4322
HOLLERITH -N NHXXX...X A8 (N+7) /%
STRING N .LE. 132
LOGICAL & .TRUE. .FALSE. FORTRAN 1
GENERATED
INTEGER
ALGEBRAIC 7 + Al 1
OPERATOR -
LOGICAL 8 .EQ. .LE. .LT. Al 1
OPERATOR .NE. .GT. .GE.
NAME] .LE 8 ALPHANUMERIC A8 1
CHARACTERS FIRST
IS ALPHA
TYPE A 10 ()=/% Al 1
DELIMITER
UNRECOGNIZABLE 20+N NONE OF THE ABOVE A8 (N+7)/8

OR EXCEED RANGE
N=NUMBER CHARACTERS
IN FIELD

Table 1. Card Images of ANOPP Data Types Recognized by Execut

jve Crack Module XCR.

EXECUTIVE MODULES

Continuation calls to XCR may be used to process multiple card images as if they were
one contiguous image. In such continuation calls, Hollerith string fields may be continu-

ed on the subsequent card image, however, other fields may not be continued.

3.9.2.27 XCRWC

Subprogram Type: Subroutine

Calling Sequence: CALL XCRWC(BIN,NC,OUTBUF,LAVAIL,LUSED,ICONT,LCP,IERR,NF)

Purpose: XCRWC is the executive crack module which identifies fields or multiple
card images with variable number of columns and cracks those card images without con-
verting fields. XCRWC builds an output table, OUTBUF, of these fields. There is one
entry for each field encountered except for blanks and commas which are recognized as
delimiters but not entered into the table. The table entries are variable length. The
first word of each entry contains the integer type code of the ANOPP data type that
follows. The value length is implied by the type code. Fields recognized by XCRWC are
Hollerith String, Type A Delimiter, and Unrecognizable. The integer type codes and the
corresponding value lengths are found in the ANOPP Data Type Table (array NDTCL in common
block /XCVI/). The fields as they appear on a card image along with the output integer
type codes and value length required are shown in Table 2. Continuation calls to XCRWC
may be used to process multiple card images as if they were one contiguous image. In such
continuation calls, Hollerith string fields may be continued on the subsequent card image,

however, other fields may not be continued.
3.9.2.28 XEXIT

Subprogram Type: Subroutine

Calling Sequence: CALL XEXIT

Purpose: Abnormally terminates ANOPP when a fatal error has occurred and performs a
trace back from XEXIT to XM. This utility is not available for use by the functional

module.

-3.9-8

GENERAL UTILITIES

INTEGER OUTBUF OUTBUF VALUE

ANOPP DATA TYPE TYPE CODE CARD IMAGE FORM VALUE FORM] WORD LENGTH
Hollerith String -N NHXXXX . . « XX A8 (N+7)/8

N. LE. 132
Type A 10 «)=/ * Al 1
Delimiter
Unrecognizable 20+N None of the above A8 (N+7)/8

or exceed range

N = number

characters in field

Table 2. Card Images of ANOPP Data Types Recognized by the
Executive Crack Module {XCRWC).

3.9-9

EXECUTIVE MODULES

3.9.2.29 XFAN

Subprogram Type: Subroutine

Calling Sequence: CALL XFAN(RNAME,ANAME)

Purpose: XFAN returns ANAME (A8) the alternate name for RNAME (A8) retrieved from
the Alternate Names Table (ANT) or RNAME if the desired entry is not in the ANT. Alter-
nate names are established in the control statement stream via the EXECUTE CS. This set
of alternate names, maintained in the ANT, is available only during the execution of the

functional module.
3.9.2.30 XFETCH

Subprogram Type: Subroutine

Calling Sequence: CALL XFETCH(NAME,VALUE)

Purpose: Fetch the value of the Executive System Parameter specified by NAME (A8).

Executive System Parameters currently available for fetching are:

Valid Name Residence Type Description

1WR /XCVT/ integer write unit for all FORTRAN write
requests to printer. Used by
system and functional modules.

3.8.2.31 XFMMQ

Subprogram Type: Subroutine

Calling Sequence: CALL XFMTQ(NAME,ITYP)

Purpose: Returns in ITYP the format type of the member specified by NAME. NAME is
a three word array where NAME(l) is the Data Unit name (A8), NAME(2) is the Data Member
name (AB), and NAME(3) is to be left unaltered as it is used by Member Manager. Valid
values of ITYP are:
I - card image format
- fixed format

variable format
- unformatted

[=iE SRy Ne]
|

3.9-10

GENERAL UTILITIES

3.9.2.32 XGETP

Subprogram Type: Subroutine

Calling Sequence: CALL XGETP{PNAME, ITYPE,VALUE)

Purpose: Retrieves the value of the User Parameter PNAME (A8) having integer type
code ITYPE from the User Parameter Table (UPT) and User String Table (UST). It is assumed
that the user has verified that PNAME is in fact an entry in the UPT. A User Parameter is
a numerical, logical, or character string value established in the control statement
stream by a param CS or in a functional module with XPUTP. This value is maintained

throughout ANOPP in the UPT and UST and may be retrieved or changed.
3.9.2.33 XINC

Subprogram Type: Logical Function

Calling Sequence: XINC(IARRAY ,RARRAY ,DARRAY,IFC)

Purpose: Determines if the input array (IARRAY,RARRAY, or DARRAY), assumed to be in
monotonic sequence, is increasing. The array used is determined by the integer type code
specified by IFC. Expected type codes are: 1-Integer, 2-Real Single Precision, or

3-Real Double Precision.
3.9,2.34 XMOVE

Subprogram Type: Subroutine

Calling Sequence: CALL XMOVE(FROM, TO,NUM)

Purpose: Moves NUM entries from sending array FROM to the corresponding position in

receiving array TO.
3.9.2.35 XMPRT

Subprogram Type: Subroutine

Calling Sequence: CALL XMPRT(NAME)

Purpose: Prints the Data Member specified by NAME, a three word array where NAME(1)
is the Data Unit name (A8), NAME(2) is the Data Member name (A8), and NAME(3) is to be

1eft unaltered as it is used by Member Manager.
3.9-11

EXECUTIVE MODULES

3.9.2.36 XPAGE

Subprogram Type: Subroutine

Calling Sequence: CALL XPAGE

Purpose: 1Initializes for printed output a new page with the standard ANOPP header

information. The five line ANOPP header follows:

Line 1 - MM/DD/YY ANOPP LEVEL N1/N2/N3 PAGE N
Line 2 - Title (16A8)

Line 3 - Subtitle (16A8)

Line 4 - Label (16AB)

Line 5 - blanks

where N1, N2, N3 are 1 or 2 digit numbers and N is up to a 6 digit integer.

3.9.2.37 XPK

Subprogram Type: Subroutine

Calling Sequence: CALL XPK(IN,NC,IOUT)

Purpose: Packs NC characters from array IN (Al) into word IOUT. NC is expected to

be an integer value between zero and the number of characters per word.
3.9.2.38 XPKM

Subprogram Type: Subroutine

Calling Sequence: CALL XPKM(IN,NC,IOUT,LIQUT)

Purpose: Packs NC characters from array IN (Al) into word array IOUT (A8) and blank

fills unused words in IOUT array.
3.9.2.39 XPLAB

Subprogram Type: Subroutine

Calling Sequence: CALL XPLAB(LABEL)

Purpose: Initializes the label line of the ANOPP header for subsequent new page with

ANOPP header requests. LABEL is an array (16A8) containing 128 characters.

3.9-12

GENERAL UTILITIES

3.9.2.40 XPLABQ

Subprogram Type: Subroutine

Calling Sequence: CALL XPLABQ(L)

Purpose: Determine current label line of the standard ANOPP header. Output array L

(16A8) will contain the current 128 character label line.
3.9.2.,41 XPLINE

Subprogram Type: Subroutine

Calling Sequence: CALL XPLINE(LINES)

Purpose: Keeps a running count of lines printed thus far on the current page and
detrmines if the number of lines remaining on the current page are sufficient for this

print request. If page is not sufficient, a new page is started.
3.9.2.42 XPUTP

Subprogram Type: Subroutine

Calling Sequence: CALL XPUTP(PNAME,ITYPE,VALUE)

Purpose: Establishes or changes a User Parameter value in the User Parameter Table
(UPT) or User String Table (UST). A User Parameter is a numerical, logical, or character
string value which is maintained in the UPT or UST throughout ANOPP and may be changed or

retrieved.
3.9.2.43 XSORTF

Subprogram Type: Subroutine

Calling Sequence: CALL XSORTF(KEY,LR,NR,IB)

Purpose: Sorts NR records in a core block IB of records having fixed length LR in
ascending binary sequence. The records are to be sorted in terms of the word within the

record whose index within the record is specified by KEY.

3.9-13

EXECUTIVE MODULES

3.9.2.44 XSTORE

Subprogram Type: Subroutine

Calling Sequence: CALL XSTORE(NAME,VALUE)

Purpose: Stores a value into the Executive System Parameter specified by NAME (A8).
The type of the value is expected to correspond to type defined for the parameter. Valid

input names and values follow:

Valid Name Residence Type Range of Values

NERR /XCVT/ LOGICAL .TRUE. only

Description: Executive System parameter for error encountered while executing
a control statement. Functional module sets NERR to .TRUE. to indicate an

abnormal termination upon return to Executive Manager.

3.9.2.45 XTBDMP

Subprogram Type: Subroutine

Calling Sequence: CALL XTBDMP(ITBL,ITYP)

Purpose: XTBDMP dumps the system table in array ITBL having the table type specified

by ITYP. Valid system table types are 1, 2, or 3.
3.9.2,46 XTRACE

‘Subprogram Type: Subroutine

Calling Sequence: CALL XTRACE(LIMIT)

Purpose: XTRACE provides a subroutine traceback capability which prints the names of
the called and calling subroutines and the lines from which the called routine was called.
The input variable limit indicates the name (A6) of the subroutine to which to trace or
the integer number of levels to traceback. If LIMIT is zero or negative, a trace to the

primary overlay level is done.

3.9-14

GENERAL UTILITIES

3.9.2.47 XT1AL

Subprogram Type: Integer Function

Calling Sequence: XT1AL(LOC)

Purpose: Calculates the current allocated length of a system Table Type 1 given LOC,

the first word of the table preface.
3.9.2.48 XT1rv

Subprogram Type: Subroutine

Calling Sequence: CALL XT1FV(ITBL ,KEYVAL,KEYLOC,ICONT,IPOS)

Purpose: Searches a Type 1 System Table or Directory, ITABL, for an entry having the

specified value, KEYVAL, in a specific position, KEYLOC, within the entry.
3.9.2.49 XT2AL

Subprogram Type: Integer Function

Calling Sequence: XT2AL(LOC)

Purpose: Calculates the current allocated length of a System Table Type 2 given LOC,

the first word of the table preface.
3.9.2.50 XT3FL

Subprogram Type: Subroutine

Calling Sequence: CALL XT3FL(IT,IC,IP)

Purpose: Locates the position, IP, of the last entry in a Type 3 Table given IT, the
array containing the Type 3 Table, and IC, the position of the character pointer in the

table preface.
3.9.2.51 XT3tV

Subprogram Type: Subroutine

Calling Sequence: CALL XT3FV(ITBL,ICHAIN,KEYVAL,KEYLOC,ICONT,IPOS)

3.9-15

EXECUTIVE MODULES

Purpose: Searches a Type 3 Table or Directory for an entry in chain, ICHAIN, having
the value, KEYVAL, in the specified location, KEYLOC, within the entry. Valid values for

ICHAIN are NT3USD, used entry chain, and NT3@TR, other entry chain.
3.9.2.52 XT3IF

Subprogram Type: Subroutine

Calling Sequence: CALL XT3IF(IT)

Purpose: Initializes new entries in the free chain of a Type 3 Table given IT, the
B I

array containing the Table.
3.9.2.53 XT3LK

Subprogram Type: Subroutine

Calling Sequence: CALL XT3LK(IT,IC,IP)

Purpose: Links an entry into a Type 3 Table Chain.

3.9.2.54 XUNPK

Subprogram Type: Subroutine

Calling Sequence: CALL XUNPK(IN,NC,IgUT)

Purpose: Unpacks NC characters from the word IN (A8) into the array IQUT (Al). NC_
must have a value greater than or equal to zero and less than or equal to the number of

characters per word.
3.9.2.55 XUNPKM

Subprogram Type: Subroutine

Calling Sequence: CALL XUNPKM(IN,NC,I@UT)

Purpose: Unpacks NC characters from the word array IN (A8) into the string array

IPUT (Al). NC must have a value greater than or equal to zero.

3.9-16

GENERAL UTILITIES

3.9.2.56 XUNPKT

Subprogram Type: Subroutine

Calling Sequence: CALL XUNPKT(IN,NC,I@UT,MAX%UT,LU@UT,@VFL)

Purpose: Unpacks NC characters from the word array IN (A8) into the string array

IBUT (Al) and truncates an overflow. NC must have a value greater than or equal to zero.
3.9.2.57 XVNAME

Subprogram Type: Logical Function

Calling Sequence: XVNAME(NAME)

Purpose: Determines if input argument NAME (AB) is a valid name.
3.9.2.58 XZFILL

Subprogram Type: Subroutine

Calling Sequence: CALL XZFILL{NAME)

Purpose: Removes the trailing blanks in argument NAME and replaces these blanks with
zeroes. In the event there are blanks preceeding the left most character in the name or

blanks embedded in the name, these blanks will remain unchanged.

3.9.3 Auxiliary Modules -

A Utility error processer may be called by any one of the General Utilities if an
error condition is encountered during its execution. Currently there is only need for a

fatal error processor.
3.9.3.1 Utility Fatal Error Message Writer (XUFMSG)

Subroutine XUFMSG (NM,CNAME,VAR1,VAR2) processes the fatal utility errors by printing

the error message indicated by NUM and aborting through a call to XEXIT.

3.9-17

EXECUTIVE MODULES

3.9.3.2 System Tables Utility Error Message Writer (XTBERR)

Subroutine XTBERR (NAME, IERR, IARG, IVAL, ITBL, IPL) processes the error messages
for some of the utilities which manipulate system tables. NAME is the calling subprogram
and IERR is the error number. If IERR is negative, the error is fatal and if positive
non-fatal. TARG and IVAL contain informative values pertinent to the error encountered.
ITBL and IPL permit the dumping of a table preface where ITBL is an array containing the
table preface to be dumped and IPL is the preface length. If IPL = 0, no table will be

dumped.

3.9.4 Hierarchy Charts

A hierarchy chart is a graphical representation of the logical relationships between
modules. Figures 1-12 are the hierarchy charts for the General Utility modules and the

auxiliary modules.

All General Utility modules appear at least once as a block entity in the hierarchy
charts. Detail is to the lowest level module except when the called module is a service
module (another utility, or a DSM or DBM module), the auxiliary module XUFMSG, or a
subprogram proQided by one of the CDC operating system libraries. However, these modules

are listed in the hierarchy chart figures.

Symbols and headings used in the hierarchy charts are given below:

NAME NAME - module name
purpose purpose - brief description
F--~=-—-- ml
represents logical module not existing as

entity. It is used for logical groupings.

indicates lower level module is called by
higher level module.

3.9-18

GENERAL UTILITIES

---------- implies logical grouping with no direct
relationship.

in upper right corner of module block
* indicates module is expanded as a separate
hierarchy.

ANQPP MODULE CALLED: a list of DBM, DSM, and General Utility
modules called by the modules in this figure.

CDC System Library Subprograms Called: a list of subprograms called by the modules
in this figure and which are not part of
ANOPP system libraries.

3.9-19

EXECUTIVE MODULES

soTyodeadTH A3TTTIIN Teaduwey °*T aandig
—Iai5ueJeq | o3 18 o
o3ed N Sy youess I 5} 5
sAgo8x o
1Xau uo - w:mw> nmew L Aaeutg - € 3ddaU0] | Teo1801
panuUTIU0) HOLAAX axIsqx WONWRIW _ 4pI
_ _
REGUET awey | _
eieq _ 231RUIIITY I yodaeeg g] SeR
jutag - wies Axeutg + PATSNTOXT |- WroJ
LMdWX _ NVJX NI¥SEX | | 4PXI _‘ MSVHI
saususTy| | ddONY wedeq eS| | I se ._ 33TUS
snoy |- aroqy A3tausplf antep @s0 - 1Tq 3397
GABHX | | [LIX3X DISVX | | anar | | LIHSTI
[
| _
UOTSISAUS
b Shadeatat! | hOUITH sy se | | outy] | /ddPNVX/ ©3
3T 1 14 woeay | entea asni- jusaan) -+ *[9y Xepuj
INTX » OMYOX INIvAN | JHILI _ o011
_ _ |
1dn Jo3 | | *pou >oead mmzu_H 201 337US | a1ep
sntea weaed| aaTINOOX3 |- 4 -Sp .02|L 11d -~ JusIIN)
PASTIISY || qOX LJIHSI ILval
dLIOX 3 JALAMN _ _
| |
|
Jeuaos | qy yoaees mmMMLH _ 3FTUS] JusweTdwo)
g - - 3Tq 3Y3Ta
zoquew *3aqf~] Kaeurg auTwIe1a(] | I ! | S
DLRIX | SYISEX JALWON _ LIHSHT _
Lo - = _— = 5 - = = = —_——
|
. [
| SeTATTTIN
| TeJsus9 "
t
1 I

*aey) o3 I
1I2AUOD

I01

I 03 ~aey)
AIIAUOD
ao1

yonpoad
TeoT307]
ANVI

da se
anTea 9s(]

INIVAQ

STaeunt
aeyo
FT "38q
LIDIA

eydre xeyo
FT °39p
VHd'TV

]
1

0 N (N [N DU

3.9-20

1S
PAGE
Q}JPJXN

oAb

GENERAL UTILITIES

(PeNUTIUOD) SITYDIBJISTH AITTTI TRILU3Y T aan8T1J

odfL manme T adAy aTqe aurT IUTJ
Axyug xcﬂqlug M@WMMA - — ddONY ..lg
ATELX _ INITdX
_ : |
Teqe'l
aweN mﬁnmw Mww%u ! Aoed _ JUBIINY _
STTI3 oadZ | mwum.wﬁcHll_ s0eal Kxenp ||4
T1I4ZX | JIelX w JOVAIX 04vV1dX _
_ |
_ € _ N atun
Tqel |
2ueN adfy o sut] ToqeT
s3eptTEA | ;Wamwm&-l_ *shs dumq - — JdJONV vl_ -
dgx CIRIL TWYNAX _ AJELX _ dNAELX _ gy1dX _ 9
¢ LIIHS . ‘g ..asz | _ o
*MSYKH J091 SdvI
‘3Lva “TdRe0 faQNv uoTl ! € ! Jejoweaed oTdTITNH
B sedua™ - 2dfr STTEL dng saao -l_ -aey) xomm-L
:pa1Te) sweaBoadqng Axeaqri waisds 24D yoedupy | Laiug pmmqu.+ ng saJaols :
. DIANOX || TELX | TBLSX | WX _
SPICH _ Z _ yootd _ . *xey)
*los o wm&,mwwnﬂuil_ 220 s3aos | | yoed | i s
OINOX | | arenel JL4PSX Ndx o
_ TZLX _
OSWNXX DSWIXX ‘9SRINX _
‘MIIELX COLWIX CYdIKL | T I _ ey
CTIAPWA MITOWW YIIOWK pacy 3dAr eTqeL _ Jo3oWweaed |_ 308l 83eg .
CWANQIWNW “ SETOWH ¢ XNSa sioedup IL yoaeag |- aaspn Ind + _ JJONV |I“
1 JoVd¥
:peTTR) SSTNPOH dJONV AINAX | AJTIX _ dlndX
N RSN

|

|

|
L

a8ed snotaoad
woxy penuriuo)d

EXECUTIVE MODULES

3aey) Ayosaeastq Yox ‘¢ 2andrjy
NANOX ¢ OSKINX A
‘OWSd ‘JWSA *lI®IA ‘VHJATV
:peTTRD SOTNPOH dJONV
pPT2T4 sentep PT9TI PTIa14 J© qd ‘sy H ‘@4 °sy
P oaaun sseooad JI9AUOD puj putg ?aqTIOsag ¢1 aqraose(q
TTTIK 24X JTYOX HOWX 1@aaox
¥ % % ¥
Aeaxy PT®TJ JO PI®1d Aeaxy
*aey) oed pui purg osauf) ssadoad - qeyy yoed
SJOX IDIOK . TITNOX S
SuieN .wawwmwpco v I23TutTeq IV ol
SS3004dd mwm.woo&& $8900ad 8Y 1Ja9AUOD
Nd¥OX 4 TITHOX adyox - 30u0X
T ‘@1 ‘ev
JngarLno oL snieis Axiug ‘U ‘qu ‘SA sniels H
SpIoM ¢ PPV 230159y ‘1 ssed0ad Aajug saeg azeTduo)
aavyox NIYAIK LPJIOX NIS¥OX HdOX

STNPOR Xo'ad

SATINOSXT
YoX

3.9-22

GENERAL UTILITIES

3aey) AyoaedasTH LPQuOX "€ 94and1j
X ‘a2 ‘lI9Id
:paTTe) SSTNPOW J4ONV
Aeaay I ol
*aey) Xoed H 1J49AU0)
SdY¥IX 108X
STJa3WNU~-UON Juauodxg q pPI®1l JFO @ sy
ol ueds§ AITIUSpI ssadoad pui putd aqTaose(
ANSYIX , dX340X HJY¥OX J3HOX R (1-9).
PTeTd
H ‘a@d ‘s¥

¢ 1 aqrJaose(
LoTa0X

3.9-23

EXECUTIVE MODULES

3aey) AyoaeddTH YAYIX

*H 2an3dT g

LIDICA
‘PeTTR) S®TNPOW dJONV

OTadUMU~UON
0] ueds
WNSHIX

%

jusuodxy
Azrauepl
dX3¥OX

PTe1d
Jo pud
JIA0X

SpT@TJ
ay ‘sy
aqraosaq
ATYOX

- 3.9-24

GENERAL UTILITIES

Jaey) AyouaeadTH dXIYOX

OTJBUNU~UON
ol uesg
WNSYHOX

‘g sand1g

LIDICQ
‘PaTTe] SOTNPON JdJONV

PTI®T4 jJ©
puj putd
J3POX

1usuodxil
£37308p]
dX3¥OX

3.9-25

EXECUTIVE MODULES

Jaey) AyoueaeTH JJHIX 9 2uan3dTjg

MdX “AnTvAM CLIHSHI
¢L3IHSTI ‘@or ‘anvi

:PITTE) SOTNPON dIONV

I 01 H
3IBAUO)

I340X

I 01 H da
upw»coo punoy
10¥0X ANMEOX
@y ‘sy
JII2AUOYD
TYSUIX

senfes pTeTd
1Jd9AU0)

JJd0X

3.9-26

GENERAL UTILITIES

3aey) AyouaedaTH TITHIX

Leaay
a93orvdey)

X084

SddoX

*L ®andtj
AdX
1PaTTe®) SOTNPOH ddONV
PTo1d 3°
pui putg
J340%

PTaT4
*zTudodaaun
ssa00ad

TTI¥0X

3.9-27

EXECUTIVE MODULES

3.9-28

3aey) AyoaedeTH OMYOX 8 2an8TJ
AINOX ¢ OSHINK
‘@01 ‘SWsa “JawWsa
ipoTTeD SOTNPOH ddONV
Aeaay
Jaioeaey) I03H
Aoed JJISAUCYH
SdddX JR9}:10) 4
T
!
]
’ Aeaay
J930B38Y) *zTu3ooaauq H oTJsunu-uoN
soeq SS85044 SSa00dd o], uedg
SJdUOX . TTINOX Hd¥OX NNS¥IX
P TUZOnD 31310 £
JndLno oL snieig Aaiug H zJugoosaun vmomwoomqw SN3IT1S 1V ©3 8y SIBITUTTH ¥
SPJIOM ¢ PPV 91031 5TY] a3aTdwe) Ssadouag PToT Aazug sAeg 1I2AUOD ad{] sseooag
aavyox NIMMOX HOMIX) TIIEX HOHDX NISHOX UK aAddox
|
UOTSJIBAUC)
INOY3ITH
oray
SMADX

GENERAL UTILITIES

qaey) AyoaeaeTH LIXIX °6 aan3T3

(=]
o~
]
o]
®
FOVELX .
CINITAX cgy1dx “HOL3JIX
:peTTR) SOTNPON ddONV
L o
&y &
S)
=
ddONY W %Unv
1a0qQy nvmmv
LIX3xX mm,F_.

EXECUTIVE MODULES

1aey) AyoaeasTH WYIALX

20883001J
Jd0aaq aTqeL

dIIGLX

‘01 2andyg

SVl
paTTe) swexdoadqng Ageaqr] waisAs 2aD

ANTTdX “LIXIX
:PaTTR) SOTNPOH dJONV

-+ 3.9-30

GENERAL UTILITIES

3aey) AyogessatH JIVILX

JOVdLX
*JIpPPY “sSqV

IPTALX

yoeq 20®BJIL

JOVELX

*TT =an8tJg

LJTHS ()
“MSYH ¢ 3091 ‘aNv

:patTe) sweaBoadqng Ageaqr] weisAS 070

INITdX
:paTTed) SOTNPOW JJONV

3,9-31

EXECUTIVE MODULES

3aeyy AyoaeasTH 9HSHINX

af8essay Jouaaj
Teiej

OSHINX

‘Z1 aan3dtg

INITdX

‘HOLAAX ‘ITXIX “JMVAY

tPOTTRD SOTNPOH J4doMNV

© 3.9-32,

MACHINE DEPENDENT INFORMATION

4,1 OVERVIEW

The following subsections describe the procedures for installation and execution
of ANOPP and of ANOPP Functional Modules. These procedures depend upon the host
computer operating system, and the loader used to accomplish the loading of multiple

overlay segments.

While the examples given in this section have been tested and can be used in
"eookbook" fashion, many variations of these basic examples are available to anyone
with a working knowledge of the specific file oriented operating system and loader
being used. For such knowledge, the reader is referred to the references at the end
of each subsection. The examples given are specific solution to the general problem
of getting the right information on the right file, in the right place, at the right

time.

L.1-1

MACHINE DEPENDENT INFORMATION

4,2 CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

Five files are of recurring interest during installation and execution procedures.

They are a source file, an object file, an executable file, a loader directives file and

a library file. While these files may be assigned any number of valid names, they have

been assigned mnemonic names such that their use will be more apparent in the procedures

described. The names are:

AN@PL

ANQPB

ANPPP

SUBSYS

LINKLIB

ANOPP source file in CDC UPDATE Program Library format.

object file of relocatable load modules, output from FORTRAN compilatien
and input to Linkage Editor.

executable load file, output from Linkage Editor.

Linkage Editor segmentation directives file in CDC UPDATE Program
Library format.

load library used by the Linkage Editor to satisfy external references.

4,241

MACHINE DEPENDENT INFORMATION

4.2.1 Installation Procedures

There are four basic installation procedures. In increasing level of com-
plexity, they are:

1. generate an executable file

2. modify an existing module

3. 1install a dummy functional mcdule

4, install a new functional module

These procedures involve the five important files, AN@PL, ANgPB, AN@PP, SUBSYS,
and LINKLIB. At each step the user has the choice of making either temporary or
permanent changes to these files, These options will be discussed in each procedure

without giving an example of every possible combination.
4.2.1.1 Generate An Executable File

The executable file, AN@PP, is output in random access mode from Linkage Editor
processing. The Linkage Editor requires binary load modules, segmentation direc-
tives, and a LINKLIB. The sample job in Figure 1 jillustrates the binary load modules
coming from AN@PB and the segmentaéion directives from C@MPILE which was output from
a CDC UPDATE of SUBSYS. AN@PB is output from compilation of source code that came
from an UPDATE of AN@PL. In this example, the compilation listing and directive
listing are printed for future reference, and the binary load modules and executable

file are permanently saved.
4.2.1.2 Modify An Existing Module

. If a module in the permanently resident segment, LINKO, is to be modified, then
a full Linkage Editor run must be made to regenerate every link on the executable
ANGPP file. Otherwise, it is possible to do a partial Linkage Editor run to
regenerate only those links containing the modified module or modules. The full case

uses all of the directives from the SUBSYS file as in generating an executable

4,2-2

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

9po) 20Janog woaj walsAg sjedausy ‘i 2an3dTj

6/68/L79 H03T SRR RRXRRREREREREEER IR RRRRE IO ERFREREEERERRERLRERERRRER O3 6rs8/7L/9
$ SOOAN3

$ SO4uvisS

6/8/7L HOI3 1315 %4 33333 I3 TR RN R T S 2232222223 222 22 222 2 X2 8 803 6/8/L
HOVL11V*ddONY
.0~w>m\2<ah&0kum—JoFWWOJ

* 440 VN

*~¢3DNA3Y

¢ 00005114

eIV GWOD* LAINNIT

000002 4

* 3N JWOD*ANIM 3

* 4dONVY * 3N 430
o<2.uommhﬂmn23\m~J¥2—J.k0w¥Z~J.IU<hh<
* 1NELINO* 311 dW0I ¢ 48SAT0D
*0=]+*SASABNS=dg* =710 d*31vAan
CYN/SASBNS*HOVL LY
*GdONY=8°*32UN0S=]1*Nid

*gdONY * 3N133Q
oON_.wuuDomuu.~<uJ.u.w»<o&D

¢ YN/ IdONV = 1010 *HOVLI LY

* 3OHYHI

* INNODOV

*q0r

4,2-3

MACHINE DEPENDENT INFORMATION

file. In the partial case a copy of an old executable file is declared as an INFILE
on the LINKEDIT directive and only those directives pertaining to the affected links
are selected from SUBSYS. In either case, the modified source is obtained from an
UPDATE of the AN@PL file. The modified source is compiled and the corresponding
modified binary load modules are placed on an LGP file. The appropriate directives
are selected from SUBSYS and input to the Linkage Editor along with LG@, AN@PB,

and LINKLIB. The Linkage Editor will search for load modules on LGZ and AN@PE and
will give preference to modules named on LGP if duplicates occur. Figure 2 gives an
example of a full Linkage Editor run with the executable ANPPP file produced in
sequential mode. TFigure 3 gives an example of a partial Linkage Editor run with the
executable ANPPP file produced in random access mode. In Figure 2, the direct
access permanent file, ANgPP, will be written in sequential form by the Linkage
Editor and must be executed subsequently with an AN@PP. control'card. In Figure 3,
the direct access permanent file, AN@PP, was written in random access format in a
previous Linkage Editor run and is copied to a local file, MYFILE, that is used as
both INFILE and QUTFILE in random access format during this Linkage Editor run. The

file, MYFILE, is executed subsequently with a MYFILE.ATTACH control card.

4.2.1.3 Temporarily Install A Dummy Functional Module

The standard executable version of ANOPP has provided for five dummy functional
modules named FM1 through FMS to reside in links 5 through 9 respectively. For
purposes of this discussion it will be assumed that the user has sufficient knowledge
of the ANOPP executive system and its interfaces to have written the source code for
a functional module and now wishes to install and execute a test of the module. To
do this, the user must first understand that the ANOPP control statement EXECUTE FM1
will really cause the module in LINKS to be loaded and executed. Likewise for
FM2/LINK6, FM3/LINK7, etc. Thus, the user must execute FM5 to test a dummy module in
LINKS, but the names of the routines in LINK9 need not be FM5. The names of the
routines in LINK9 are determined by the INCLUDE directives for that link and must

have been found on LGP or AN@PB. The following two examples illustrate these

4. 2-4

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

uny o3aTp3 e8exuT] TTNJ WI0FIad PUR 3pO) S2aN0S ejepdn -z ean3dtg

6/8/L79 H0T HAERRERRXEEERREHXXE R REHEEE FOT M09 052 H RSN E IR X RN 303 6/8/L/9
$ SOOAN3

$ SO1NVYIS

6/8/L HOT ARHERREREXAXEREEEH XXX ARER HO3 39 3 9 353 33 3 3 3 I U2 AR 303 6/8/L
SHNITIONI*LIA3NNIT O#

000G 1=(9)WYHVD* { 1) dddONY =311 44N0* L3 LIASMNIT

Z2el1A3NNITY Ox

JONVYHD Ql#x

6/68/L HOT HAARUX*EXEFRHRFRERRER XA AR HO3 FRERRARREBERFERRRFARERR R R R YOI &6/8/7L
. (S)MO30 34VIiddOlddVY O#

3002 3J8N0S 04 31viddOdddv SV sSNOILVOI4IAOW ANV SIONVHD Aivadn /#

IONVHD Alx

6/8/L HOT At XRARERESEXRRARRREEIEF RS D03 SRHRERFARBEFREREEERRRRRRR AR HO3 6/87L
* JdONV

O[SAS/NVHLINO4=811 13507

* 440 dVW

*=+303NA3Y

000061 4N

* IV IWOD* LAINT T

* 000002 13

o<Z.UomNhnwuZD\m—J¥2—J.k0M¥Z—J.IU<hh<

*YN/SJdONV*HOVLLY

SyNSM=W./ddONV ¢*HIOV11V

SASENS=d 1="1*D*31vddN

CYN/SASBNS*HOVLILY

¢ JONYHO =] Nl

e JONVYHI=D* [=T1*D*31VvQAdN

s YN/ TdONVY=1ddTI0*HOVLI LY

* ISPV HD

* INNOD OV

*gq0r

4.2-5

MACHINE DEPENDENT INFORMATION

uny a03Tp3 oFequr] TRTIJIRJ WJIOFaad PUe Ipo) 9dJnog e3epdn ‘¢ aan8T1J3

6/8/L/79 HOT FARAXFERREERRERFXFARRARARE FOD FRFXRARRBARRREXRERRERARRR JO3 6/8/L/9
- $ SOAN3

$ SOlyvis

6/8/L HOI %NERUREAFHEERERFREREHREXREHE HOT RERH R R XA HRHER R G S X RRER ¥R HOI 6/8/L
(O MNIT NYHL ¥3HL0) NI 31vIiddOodddvy O

SHUNITVONI*LIA3INNIT O

000G I=(9)IWVHYAE* (D)3 JAW=TIIALN0* (D) 3N JAW=ITIINTI ¢ 1377 LIQINNIT

S*LIQ3NNIT Ox

3FONVYHD Ol#x

6/8/L HOD HANEHHHRREFFRRERARFHEEEREERE TO3 SRet S #EEEERREFRREERERRRRRE HOI 6/8/L
(0 NI NI LON) (S)MO3IQ 3ILvIiddOdddVy O=

31VIiNdOHddVY SV *SNOILVOIJIAOW ONV SIONVHO 3ILvdan /%

AONVHD dlIx

6/8/L HOT HREEERERERERRRFRRERFRRRRERRE SO AR RAFFHARBRRERERERRHRFRRR S HOI 6/8/L
HOVLILIV®*3N] JAW

0ISAS/NVHiEO4=81 1350

*440dVYW

¢ =¢3DONA3Y

* 3N AW0D LAANNITN

*0000S 1 ¢4

*YN®*D0S2LEB=NN/G] NI I LAIMNIT¢HOVILY

*YN/QdONV*HOVL LY

* 3V H4AW * JONY* 1 JAJOD

*YN/ddONV *HOVYLI LY

SASANS=d I=1*0D*3LVAdIN

CYN/SASBNS*HOVLILY

*JONVHO =] ¢NLd

¢ IONVHI=D* 1714 D¢ J1ivAdN

* YN/ IdONY = 1dQ10* HOVL LV

*39HVYHD

* AINNCDDV

*qQor

4,2-6

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

concepts. In the first, a dummy module consisting of the single subroutine FM2 has been
installed in LINK6, and secondly a dummy module consisting of three subroutines has been

installed in LINKS.

In Figure 4, the dummy module source code consisting of the single subroutine FM2 is
compiled and the relccatable load module FM2 is placed on the file LG@. Then a partial
Linkage Editor run is performed using the set of directives for LINK6 called from SUBSYS.
These directives already have an INCLUDE statement for the dummy routine FM2. Then the new
executable version of ANOPP on the local random file MYFILE is executed and the dummy

functional module is tested via the EXECUTE FM2 control statement.

In Figure 5, the dummy module source code consisting of the three routines MYM@D,
MYM@DA, and MYM@DB is compiled and the three relocatable load modules are placed on the
file LGP. The Linkage Editor directives for LINKB are supplied from INPUT to reflect the
overlay structure desired for the three routines of the dummy module to be tested. A
partial Linkage Editor run is made to construct a new version of the ANOPP executable code
on a local file, MYFILE. This version contains the new dummy routines in LINK8. The
dummy module can be tested by placing an EXECUTE FM4 card in the ANQOPP control statement

set and executing an ANOPP run via the MYFILE.ATTACH control card.
4.,2.4.4 Permanently Install A New Functional Medule

Permanent installation of a new module requires some minor modificiations to part of
the ANOPP executive management system. The primary concern is to match the new module
name with the new link in which it resides. This is accomplished via matching entries in
the two arrays FMN and IFMN in the subprogram XRTSEX. The length and contents of these
arrays are controlled by INTEGER and DATA statements in the same subprogram XRTSEX. The
number of active entries in each array is controlled by the variable NFM in the common
block /XCS/ and is set by a DATA statement in the subprogram XCSBD. Array FMN contains
the names of existing functional modules, and array IFMN contains the corresponding link
numbers. At present, dummy modules FM1 through FM5 in links 5 through 9 are permanently

installed.

MACHINE DEPENDENT INFORMATION

ZWJ °2Tnpoj TRUOTiIoUNg Auwum@ @Indaxg ol uny wd,memm ‘4 aand13

6/8/L/9 HO03 H¥AXARXRERRERAREERBEEREERE FOD HURERARAEEFBER AR N UNRERRES JO3 6/8/L/9
$ SOAN3

31vIiUDONdDDY SV *SAINIWILVLS TOHINOD dJIONYV L 5

] $ 2Wd 31N23X3

3ividdOHddY SV °*SLIN3WILVYIS TI0OMLNOD ddONY 3

$ SJOlyvis

6/78/L HO3 AAXARAERRRARXRAERBHEERRRRERE HOD FRAXRERSA NN FRNEFRBERB RS RAE HOI 6/78/L
ONNITT On

SHNITIONI*LIQIANNITT Ox

000G 1=(9)WYHVdD(Y) IV JAN=IILILINO (D) IV 4AW=23I VI IN] * 137 LIQ3NNTTY

2eLIA3NIT Ow

AWNNG Q1

6/8/7L BOI HHE M H1 A REEEEE 0¥ HEF #8008 HO3 WA U 0 AR R R R HOD 6/8/L
*

SWd 3TNAOW IYNOILDONNA AWWNG 404 D30 3D8N0S *

»

6/8/L HO3 ARAARAAAEXEABEAERERRRRRRERAN HOT SRR AR ARARRERRFARRRRFRHR RN HOT 6,8/L
HOVLILV*3 I JAW

01SAS/NVYLIYO4=8171 13S0

*~¢3D5NA3

®440°dVUN

3NIGW0D LA3INNITT

0000S1 14y

CYN®D0SZLEB=NN/B]I NI LAIMNNI I HOVL LY

SUN/BdONV*HOVLLlY

*1=T1*D*3ILvAdN

CYN/SASENS = D310 HMOYLLY

*3T3AW ddONVY ¢ | 3ALOD

*VYN/AdONVY *HOV 1LY

*NJld

® ADAYHD

®* LNNODOVY

*qor

4.2-8

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

———

3Tnpoy Teuoriouni Awwng TTeisul Artaesodws] o] uny stdwesg ‘*g aandtj

.

6/8/L79 J0T HARRFRERRXEEHEHEE XX ERHRRHH JOT AARRXERXXEERERRRARHERRRRR JO3 6/8/L/9
$ SOAN3

JIVI¥G0OUddDY SV *SIN3WILVIS TONINOD ddONV [

$ vwWwd 3ILINDOIXI

3LV 80UV SV *SINIWIIVIS TTOHLINOD ddONV $

$ SO.LyvisS

6/8/L HOT X¥AARE RN EEEXEREKXHHH XXX XXX XXE HOT HHXERFHXRRFXRR XXX X AR ARXRRR® HOI 6/8/L
SOANITIAN3

QN3

(BCQOWAW) BdONVY 3CNIDNI

3NO AVTISAO

(VQOnAW) 8dONV 3IANTTONI

3NO AV WIAO

(AQOWAW) HEdONY 3JANIDNI

QOWAW ABLN3

8 NI

HBdONY * QO 1= GJONY AHVYNGI T

000SI=(9IWVEYd®* (D)3 4AW=3T131N0* (3 ITTJAW=3T1aINI *137 LIA3IANIT

6/8/L HOSZ K AREKEFREEXREKERFEREREEREREE TOT HEXRXAFERRERRRAREXRRAERX X #% HOI 6/8/L
»

3INAOW TTYNO T LDNNE AWWNG 304 Sx230 308N0S *

»*

6/8B/L HOT XRRARRERAXERAREFRF R X E1x% HOT REXEAFXXFERRERAXBXRERRERRR® HOI 6/8/L
HOVLLVY®*31 dANW

O1SAS/NYVYHLYE04=E]1T1 L3507

*—+30NQ3

* A0 AV

*LA3MNNITT

* 00008 1¢ 13y

CYN®*D0S2LEB8=NN/BI NI I LAIANTIT*HOVL LY

*YN/BJONV*HOVL LY

* 3] JAN*ddONY* 1 3AH0D

CUN/dAONVY ¢ HOV L LV

*NL1d

* 395V HD

* INNOD DY

*egor

4,2-9

MACHINE DEPENDENT INFORMATION

In Figure 6, an example of adding a new module with the symbolic name NEWM@D is
given. The module will be placed in LINK10. To begin with, the source code for NEWM@D
and the required changes to the executive management modules is obtained by an UPDATE of
the source file AN@PL. In this example, the NFM variable is increased to 6 and the name
NEWMZD is placed in the array FMN while the link number 10 is added to the array IFMN.
After compilation, the binary load modules are placed on the file LG@. A full Linkage
Editer run must be performed since a subprogram in LINKO is being changed. Thus, all of
the directives from the SUBSYS file plus the new LINK10 directives must be used. The
new version of ANOPP is executed by an AN@PP.ATTACH card and the new module is tested

with an EXECUTE NEWMPD control statement.

In this example, it is assumed that the new module was previously tested thoroughly
as a dummy module and that the installation is intended to be permanent. Therefore new
versions have been created or rewritten for the source file, ANPPL; the binary file,

AN@PB; the directives file, SUBSYS; and the executable file, AN@PP.

4,2-10,

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

aTnpoy TeuoTiounj MeN y TTeIsul ATiusuewtad ol uny o7dwes ‘g aandij

(@3ed 31xou uo panUTIUOY)

6/8/L HOI HHHHXAHRHHHHHHHHHEXHHHEHHHHE TOIT 33038 5905 033333330932 3335 % 4% ¥03 6/8/L

/%
AQOWM3N 3NCGOW ¥Od 523a 3d28N0S /®
/%
AOWA3N MO«
ELL

/9/W3NG /%7 LAITIXNS 4
681°Q8SOX O*

/s Ox¥v *0l1 ' 6 ‘g s L 'S ¢S / NwWd] vivd

/ Hixt *CQOWM3NHY *SWIHE *UWAHE *CWIHE SZWAHE *TWJHE 7/ NWd vivd
681+881*X3IAS1YHX A«
WHR3IN Qls
6/8/L HMOT HRWH AR EREHREHHFEXHH XN H 1% TOT 8305 H 3TN H RN 303 6/8/L
HOVLiLiV *ddONY
OISAS/NYHLIEO4=8917 L3507
* 440¢dVYNW
* =+ 3DNA3Y
000051 130
¢ 3T gWOD* LA3NNITT
¢TI dWOD*ANIM3Y
000002 13y
cUN®D0GZLEB=NN/GI DINTTIC LGANNI IS HOVLILY
SYN*M=W/ddONV*HDVL LY
e SASENS * TdMIN®* AJOD
SN SASENSSd® =10 44 3LivAdN
CSYNSM=W/SASEBNS*HOVLILY
*GAdONV*0971¢ A40D
*09T1*ANIM3Y
SYNSM=W/GdONV*HIVLILY
*o="T¢J*NLd
1d@TI0 IdM 3N AdOD
NS¢ Ty="1*d4¢31vAddN
YN *M=W/ IdONY =100 * HOVL LY
* 39UV HD
* INNQDOV
*gor

~i
«
i
(3]
=

MACHINE DEPENDENT INFORMATION

(PSNUTIUOD) BTNPON TEUCTIOUN] M3N v TTEISUI ATIusuewasq ol uny ordues °g sandt1g

6/78/L/9 403 %HAAXREREXREREEXRERBAEREH 2% JOT SEFREFEARRRRERRRERRARRRAR JOI 6/78/L/9

$ SOON3

31V]1dd0dHddY SV *SUINIW3ILVLIS TONLINOD ddONV L

$ QOWM3N 31ND3X3

3LV 8dOBUAdVY SV *SINIWIIVIS TTOHLINOD ddONV]

$ SOLUviS

6/787L UOIF FAREAERRFANERXERRBRRRRENRAEE HOT RRRE AR HERARRFBERHRFRRRFRR2R HOI 6/8/L
AaN3

(QOWM3N) GdONVY 30NTION]
QOWMIN ANLINI

ol MNIT

OINNIT da»

65N1Te dys

(@3ed snotasad woay penurilucd)

4,2-12

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

4.2.2 Execution Procedure

Execution procedures involve both the external host computer operating system en-
vironment and the internal ANOPP executive and data base management system. The external
system is concerned with initiation of program loading and access tc system files. The
internal system is concerned with interface and access to and between external files and
internal data base structures. Some operations must occur in pairs or combinations while

other procedures or control cards act independently.
4.,2,2.1 Program Loading

Loading procedures for the executable program vary depending upon the random or
sequential mode of the file to be loaded. The executable file is a double file containing
a bootstrap program and executable program separated by a file mark. The control card
that loads the executable file actually loads the bootstrap loader program that then
accomplishes loading of the executable program. The actions taken by this bootstrap
loader are determined by the form of the control card. If the bootstrap loader program
and executable program reside on an executable file named ANQPP, then the loading options

dare:

1. LDSET,LIB=F@RTRAN/SYSI@.
AN@GPP . ATTACH

This form is used by the bootstrap loader to execute an executable file that
exists in random format. A random format is produced by the Linkage Editor as
an PUTFILE with R or C status. It can alsoc be produced from a sequential file
by the bootstrap loader under the CATL@®G option (see 2. below).

2. LDSET,LIB=FORTRAN/SYSI@.
AN@PP.CATLBG(XXX)
LDSET,LIB=FORTRAN/SYSI@.
XXX.ATTACH

These two control cards must appear in a pair and the name xxx may be any valid
file name, but must be the same name on both cards. The CATL@G command in-
structs the bootstrap loader to transform a sequential executable file ANPPP
into a random executable file xxx. The random file xxx is then executed with
an ATTACH command similar to 1 above. The file ANPPP must be sequential and
could only have been produced by the Linkage Editor as an @UTFILE with S or T

status.
(‘)"1‘!(; 11‘\7AL PAG) 4,2-13
Jg POOR QU g 15 |

MACHINE DEPENDENT INFORMATION
3. LDSET ,LIB=FORTRAN/SYSI@.
AN@PP.
This form may be used to execute a sequential executable file output from the
Linkage Editor. In this case, the bootstrap loader internally generates the
equivalent of 2 above in the form ANPPP.CATL@G(SYSLMZD) followed by SYSLM@D.
ATTACH. This form may not be used with random executable files.

The N@S operating system and FORTRAN extended language together provide the-option of
changing the names of program files at execution time. This is accomplished via an order
dependent substitution of file names on the control card that initiates program loading.
For AN@PP, the two main program files are INPUT and @UTPUT as declared in the main program
XM. Alternate file names can be substituted for them by altering the AN@OPP,ATTACH and
AN@PP. execution sequences above., Substitutions cannot be made with the AN@PP.CATL@G
card, but may be placed in the xxx.ATTACH command. The substitutions are made by including
the alternate names, separated by commas, between the final P in AN@PP and the period(.)}.
The list is order dependent, but may terminate early. However, leading commas must be

used to space over leading files for which no substitution is desired. TFor example:

AN@PP ,ALTIN ,ALT@UT . ATTACH
ANPPP, ,ALT@UT.
XXX ,ALTIN.ATTACH

4,2,2.,2 Data Interfaces

Certain correspondences must be maintained between internal data units and external
files during an ANOPP execution. Other correspondences can be noted from one execution to
another, For example, an ATTACH of a data unit and external file must have been preceded
by a CREATE of the internal data unit and a SAVE of the corresponding external file in
another run. Most of these restrictions have been mentioned in descriptions of individual
ANOFPP control statements. Two examples of ANOPP executions that illustrate inter and intra

job dependencies are presented.

The first job, in Figure 7, begins with attaching a direct access permanent file
ANPPP which was previously output as a sequential executable file by the Linkage Editor. A

sequential external file SEFN is accessed, a direct access permanent file EFN3 is at-

4,2-14

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

T9HAN Jequey @3ieea) of uny sTdweg -, smirg

€/8/7L/F HOD RARRARERAXAEARERRAREFHENR®E FOT ##HHHRRHRFRHHHHR XN R¥AARR% JOD 6/8/L/9
$ SOAN3

$ €LINN 393Nd

$ /Nd3S/AQVOTINN

SELINNSIATHOYY

$2LINNSHIVL3A

$ #QON3

& *8 L ¢G *E€] = d3A4

01 ¢G5 ¢1 ¢ o2 o] = 2(0N!

S*P *0°%°2 *S*1 ¢l *0 *¢ *SH = IANI

1 *0 = AN}
$ #=304N0S *1 *(1T8L)Z24INN 3ITNQVL
$ #QAN3

$ (19W3W)Viva »QAvV-
$ #z32HNO0S* TLINN=NMIN®* 3LyddN

$ #QON3

$ Ws8W3W N=1lINN 3SION 3iNO3X3

$ (8W3W = WG viva
S/ENSI/ZELINN/SZNAS/2LINNS TLINN 3iv3IHD
$ SOlyvis

6/8/L HOI HAXAXAERHEFRERE XX RRXEBXXEEREE HOT BERRRF XA RAXREARERRRLRF XA XS HO3 6/8/L
NH43S IOV Id3Y

*Nd=i2/21L INN=2N4A3*IAVS
HOVLlY * XdONY
OISAS/NVHLIHOH=8]1 1350

(XJONV I D0TIL VI * JdONY
OISAS/NVYELIYMO-4=8I1 L35G

¢ 440 dYW

*~+30NA3Y

0000S1I 13y

*Nd=LD/XdONV ¢3N] 430
PUNSM=W/ENIISHOVL LY

N435 139

*YN/DdONV S HOVL LY

* 39UV HD

®* ANNODDV

*qQor

4,2-15

MACHINE DEPENDENT INFORMATION

tached, and another direct access permanent file AN@PX is defined. The ANOPP program is
loaded and executed via the CATLPG/ATTACH sequence. The sequential executable file
ANPPP is transformed by the bootstrap loader into the random executable file AN@PX and
then loaded and executed via the ANPPX.ATTACH control card. During execution, UNIT?1 is
created with a scratch external file name and UNITZ is created with an external file name
EFN2. UNIT3 is created and connected to the externally attached EFN3. Member MEMB1 is
placed on unit DATA. Member MEMB1 is added from DATA to UNIT1 during the ANOPP UPDATE
control statement processing. Member TBL1 is placed on UNIT2 during ANOPP TABLE control
statement processing. UNIT2 is detached from Data Unit Directory but the external file
name EFN2 remains open in the external system. UNIT3 is ARCHIVED. The remaining non-
archived data unit in the Data Unit Directory, UNIT1, is unloaded to the sequential
external file SEFN. The purge of UNIT3 causes the data unit name UNIT3 to be removed
from the internal unit directory and the external file name EFN3 to be removed from the
external system file table. Following ANOPP execution, the external file EFN? is per-

manently saved as UNIT2 and the sequential file SEFN is replaced.

The second job, in Figure B, begins by copying the ANOPP primary control statement
set from INPUT to an alternate file @THERIN. Next the sequential external file from job
1, SEFN, is accessed and the external file equivalent to EFN2 in job 1 is accessed from
the permanent file UNIT2. Then the previously created random executable file is obtained
by an ATTACH of ANPPX and loading is initiated via a bootstrap loader ATTACH command with
the alternate input file @THERIN substituted for INPUT. During ANOPP execution, the data
unit UNIT2 is attached into the Data Unit Directory and connected with the existing ex-
ternal file UNIT2., UNIT1 is loaded from SEFN after which SEFN is removed from the Library
File Directory and from the external system file table via the DR@P control statement.
After all cracking and substituting is ACcomplished, the CALL control statement eventually

leads to execution of the ANPPP control statement EXECUTE N@ISE UNIT=UNIT2 ,MEMB=TBL1 $.

4,2-16

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

TSHAKW Joqusy pelpad) ATsSnoTasdd 21noexjg ol uny o7dwueg °g @an3dT]

6/78/L79 HO3 HAREHFFEXFREAEXEERRFEXRH*A% IO

6/78/7L HOZ %A R B HHHHHERHEEEERE R X424 SOOI

HEKN R EEREE RN RN AR AN ARR JOT 6/8/L/9
$ SOON3

$ [8L=W*2LINN=N (TISWIW) LLINN WD

$ /NJ3S/ 4080

$ /N43IS/7AvOTl

$/72LINN/ZLINNHOVLI ALY

$ SOL¥ViS

REERETARERERERRFERRRARARRARE HO3 &/8B/L
HOVLALVENIE3HLIO * XdONY
*OISAS/NYHLIYOE=G] 1 L3800
*YN/XAIONVSHOVL LY

* 440*dVNW

*=~¢3I3DNA3Y

* 000081 * 13

*2LINN 13D

*Nd43S¢139

SNIN3HLIOSONIM3Y

NIYIHLO LNAN] *AdOD

*3OYVHD

* INNODOVY

*gor

4,2-17

'MACHINE DEPENDENT INFORMATION

4.,2.3 CDC CYBER NOS DEPENDENCY

1. Coding Standards Violation;
2. Direct use of operating system capabilities; and

3. Interfacing the ANOPP Data Base Manager with the CYBER Record Manager.

The following paragraphs document what these dependencies are and where they are in

ANCPP.

4,2,2.1 Standards Viclations

1. Use of the intrinsic functions available through CDC CYBER FORTRAN EXTENDED.
2., Use of "no mode" arguments in subroutine and function calls.

3. Use of named block data subprograms.

4.2.3.2 Operating System Dependent Subprograms

a. XBSDrL This CYBER COMPASS subprogram uses the MEM macro to determine the

amount of central core memory available for the ANOPP run.

b. XPURGE - This CYBER COMPASS subprogram uses the UNLOAD macro to dispose of
unwanted files.

c. MMCRMX - This FORTRAN subprogram is used by CYBER RECORD MANAGER if an error
is found in accessing an ANOPP data unit.

d. XTRACE ~ This FORTRAN subprogram uses FORTRAN generated trace back struc-
tures.

The following subprograms use CDC CYBER Record Manager subprogram calls to perform

input/output operations:

1. MMFEFB 6. MMRMD 11. XLDEND 16. XUN
2. MMGEFB 7. MMRMH | 12. XLDFDM 17, XUNBGN
3. MMGET 8. MMUHMD 13. XLDFDU 18. XUNCPY
4, MMMDMH 9. XDR 14, XLDLDM 19. XUNEND
5. MMPUT 10. XLDBGN 15. XLDLDU 20. XUNLUH

4,2,3.3 1I/¢ Interfaces

On CDC CYBER NOS, the ANOPP Data Base Manager makes use of the CYBER Record Manager
(CRM) for all input and output. Data Units are written to word addressable files using

unformatted records. ANOPP Library Files are generated using CRM Internal blocking (I)

4,2-18

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

and control word (w) record format. On NOS, CRM has FORTRAN callable subprograms which

are heavily used by ANOPP Member Manager.

4,2-18

APPENDIX A

GLOSSARY

Alternate Names - The set of names, established on the EXECUTE CS, which corre-
sponds to a set of reference names. The set of altermate names
is maintained in the Alternate Names Table and is available for
retrieval by a functional or an executive system module during

the execution of that functional module.

Cleanup Procedures - Functions performed upon completion of functional module to
insure the integrity of the ANOFP system environment. Includes

corrective action taken when system conditions are invalid.

Control Statement - (CS) One or more card images which define a particular action
to be performed by the ANOPP EM System. A set of control

statements defines the execution sequence of an ANOPP run.

Control Statement Processing Phase - The phase of EM execution in which the control

statements are processed.

Control Structure - A table, a directory or any other information block which is

core resident and not residing on a data unit/member.
Cs - see Control Statement

DATA _ DATA is the data unit created by ANOPP Executive Management
System. It is used to store data members created as a result
of the DATA control statement encountered in the Primary Input

Stream,

Data Base Management System - (DBM) The subsystem of AN@PP which provides a method of
storing and retrieving data on auxiliary storage. Used by the
ANOPP executive system and by functional modules.

Data Base Structure - A table, a directory, or any other information block which

resides on a data unit. The general organizational structure

A-1

Data

Data

Data

Data

Data

Data

Data

DBM

DM

Element

Member

Member Format

Record

Table

Table Type 1

Unit

GLOSSARY

of a data unit and a data member are also included as data

base structures.

One or more words residing on a formatted data record. The num-

ber of words is determined by the data member format.

(DM) An ordered set of information which resides, in a log-
ically continguous fashion, on a data unit. The information

includes user data and Data Member Manager data.

Specification which describes the composition of data records
residing on a data member. The specification for a formatted

record is a string of element codes.

An ordered set of data elements or words residing on a data
member. The record may be unformatted or it may be formatted
as fixed, variable, or card image according to the data member

format.

A user-created table of data availdble to the functional module
for processing. A one-record data member having an internal

format corresponding to a defined Data Table Type.

A tabulated function of n independent variables (present maxi-
mum = 4) for which acceptable interpolation and extrapolation

procedures may be defined.

(DU} A Data Unit is the highest level of the ANOPP Data Base
Management System data structure that can be referenced directly
by ANOPP modules. It is physically stored on direct access
storage devices and is uniquely identified within an ANOPP

run by a data unit name. A data unit is a set of data members.
see Data Base Management System

see Data Member

GLOSSARY

DSM - see Dynamic Storage Management System
DU - see data unit

Dynamic Storage Management System -~ (DSM) The subsystem of the ANOPP Executive Mana-
gement System that provides a method of allocating and re-

leasing blocks of core storage within ANOPP.

Element code - Descriptor within a data member format used to describe an

element code for a one word integer element.
EM - see Executive Management System

End of Data - (EPD) end of data character ($), recognized by the Executive
Cracking Module (XCR) and Executive Crack Without Conversion
Module (XCRWC) as the termination of character string data.
Utilized primarily as the terminator of control statement

images.
E@D - see End of Data

Error Processing Phase - The phase of EM execution which determines the action to be
taken when a non-fatal error occurs during the processing of a
CS. The action depends on the value of system parameter JC@N.
JC@N = .TRUE. results in the resumption of processing with the
CS following the CS in error. JC@N = .FALSE. results in the
resumption of processing with the next PRACEED CS or ENDCS CS,

whichever occurs first.

Error Termination Phase - The phase of EM execution which results in abnormal termina-
tion of ANOPP with an informative message as to the cause.
It is entered when an executive module detects an error condition
which inhibits further meaningful execution.

Executive Management System - (EM) The subsystem of ANOPP which performs initialization

and validation of the ANOPP System, directs the sequence of

processing based on a user-supplied CS set, directs action taken

A-3

GLOSSARY

after the occurrance of a non-fatal error, and performs a

normal or abnormal termination.
F.M. - see Functional Module

Functional Module - (F.M.) One or more executable modules recognized by the ANOPP
executive system. A functional module is called into execution
when the Control Statement Processing Phase encounters an
EXECUTE CS and transfers control to the Function Module Pro-

cessing Phase.

Functional Module Processing Phase - The phase of EM execution which interrupts the CS
Processing Phase and brings into execution the F.M. specified on
the EXECUTE CS. Upon completion of the F.M., the integrity of
the ANOPP system enviromment is validated and insured through
Cleanup Procedures.

GDS - see Global Dynamic Storage

General Utilities - a collection of general purpose modules available for usage by
all executive system routines. Most of the general utility

modules are also available for use by functional modules.

Global Dynamic Storage - (GDS) A section of free core storage defined and maintained by
DSM to provide for inter-module communication and for storage of
ANOPP directories and tables. GDS resides at the end of a
user's field length for the life of an ANOPP run. The length

is determined by a parameter on the AN@PP CS.

Hierarchy Chart - A graphical representation of the functional relationship between
modules.
IDX - An IDX is an integer variable which contains the location of a

block of dynamic storage relative to a reference point which,

for the ANOPP system, is the /XAN@PP/ common block.

Index -

Initialization Phase -

LDE -

Local Dynamic Storage -

MGO1 -

Member Manager -

MM -
Module -

Mxxx -

Mxxx Completed Execution

GLOSSARY

Location relative to beginning of table or table entry re-
ferenced with an ordinal of 1 (one). Used primarily in DBY¥

module prologues and descriptions.

The phase of EM execution which controlls the initiélization of
the ANOPP system environment, which includes printing of the
standard ANOPP title page, processing the Primary Input Stiream
through the STARTCS €S and performing initialization func-

tions for EM, DBM and DSM.
see Local Dynamic Storage

(LDS). That part of core storage maintained by the Dynamic
Storage Management System that begins with the word following
the longest segment in current execution and ends at the start

of GDS.

The data member name which contains the Primary CS Set on XSUNIT

data unit.

(DMM, MM). That part of the DBM sub-system which provides the
F.M. writer and the EM subsystem with basic open/clese,
read/write and position functions for creating, accessing,

and maintaining data members.
see Member Manager
A FORTRAN or COMPASS subprogram.

Name of the data member which contains a Secondary or Primary

CS Set.

- Completed execution describes the status of an Mxxx member
when all control statement records on that member have been
processed. The Mxxx member is not in current execution or in

suspended execution.

A-5

Mxxx Current Execution -

Mxxx Suspended Execution

Normal Termination Phase

GLOSSARY

Describes the status of an Mxxx member when that member is
open and the control statement records on the member are being

processed. The CS currently in execution is on the Mxxx member.

- An Mxxx member is put into suspended execution if, during
processing of the Mxxx member by the CS Processing Phase, a

CALL CS is encountered. The Mxxx member in current execution

is closed and processing resumes with the Secondary Inbut Stream
specified by the CALL CS. When the Secondary Input Stream is
completed, the Mxxx member in suspended execution is re-

opened and processing resumes with the CS following CALL.

- The phase of ANOPP execution which is entered when CS Pro-
cessing Phase is complete, and includes printing an informative

message, closing member MOO1, and halting execution.

Parameter Maintenance Functions - A group of general utilities which establish, change,

Position -

Primary CS Set -

Primary Edit Phase -

Primary Input Stream -

or retrieve user parameter values. These include XPUTP,

XASKP, and XGETP.

Word position relative to beginning of table or table entry
referenced with an ordinal of 0 (zero). Used primarily in

DBM module prologues and descriptionms.

. The executable form of the Primary Input Stream constructed
during the Primary Edit Phase. It resides on the root member,

MOO1, on the EM unit XSUNIT.

The phase of EM execution during which the MOO1 root member is
built from the control statements in the Primary Input Stream.
This phase follows the completion of the initialization phase.
The set of card images found in the ANOPP input stream beginning
with the first image following the STARTCS control statement

and including all images through the ENDCS control statement.

Root Member

Secondary CS Set

Secondary Edit Phase

Secondary Input Stream

System Parameters

System Table

Table Manager

™

GLOSSARY

- see Primary CS Set and MCO1.

- The executable form of the Secondary Input Stream constructed

during the Secondary Edit Phase and residing on an Mxxx mem-

ber on XSUNIT.

The phase of EM execution during which a CALL control state-

ment is processed. On the first execution of a CALL CS, the
Secondary Edit Phase builds an Mxxx type member containing CS
records that correspond to control statements in the Secondary
Input Stream. The Secondary Edit Phase provides the environment
required for the CS Processing Phase to resume execution with the

first control statement on the new Mxxx member.

A set of control statements residing on a data member in card
image (CI) format and brought into execution when a CALL CS
is processed that specifies the member as the DU (D) parameter

on the CALL CS.

_ Variables used in determining characteristics of a particular

ANOPP run. The default values of certain executive system
parameters may be modified during the Initialization Phase

via user-supplied values provided on the ANPPP CS. The value
of user system parameters may be set during CS Processing Phase

via user-supplied values provided on the SETSYS CS.

A data structure used by various executive modules. The table
structure has two parts, a preface and a body. The preface
describes the table's current status and the body contains the

entries.

(TM). That part of the DBM subsystem which provides open/close,

build, and interpolate functions for data tables.

- see Table Manager

A-17

GLOSSARY .

UPDATE Utility - An EM subsystem which provides the AN@PP user with a means of
building a new data unit using an existing data unit as a basis
for modification or drawing from data members on several data

units, It is initiated via the UPDATE CS.

User Parameter - A parameter, when once established, remains available to the user
throughout the ANOPP run. The value of a User Parameter may be
established or changed during the CS processing phase via the
PARAM CS. The value of a user parameter may be established,
changed, and retrieved during the F.M. Processing Phase via the

Parameter Maintenance Functions.
Utilities - see General Utilities
Uxxx - A member, residing on the EM System scratch unit XSUNIT, con-

taining card image source input data encountered in the Primary

Input Stream during the Primary Edit Phase.

XSUNIT - The executive scratch data unit created by the ANOPP Executive

System modules. It is reserved for ANOPP Executive System usage.

APPENDIX B

INDEX OF MODULE NAMES
B.1 EXECUTIVE SYSTEM MODULES

The ANOPP executive system is comprised of many modules. Each module is part of the
Data Base Management System, the Dynamic Storage Management System, the Executive Manage-
ment System, the UPDATE Subsystem, or the General Utilities. In the following section,
all ANOPP modules are given according to the corresponding executive module in alpha-
betical order. With the module names are given the Figure number of the hierarchy chart(s)
which contains the module, and the section number where a description of the module can be

found (if applicable).

B.1-1

INDEX OF MODULE NAMES

B.1.1. Data Base Management System

B.1.1.1. Member Manager

The modules comprising the DBM are listed below. Figure numbers refer to figures in

Section 3.6.3

Name Figure(s) Section
MMBAME 2,13,14,15

MMBFSI 3

MMBFST 3

MMBFT1 3

MMBFTS 3

MMBFTS 3

MMBMCI 4,13,14,15

MMBMH 3,14,15

MMCL@S 1,4 3.6.3.7
MMCLSE - 4

MMCRMX 4,7,11,12,13,16,20,23

MMD@NC 4,5,13,23

MMEDNM 1,4,8,9,10,12,17,18,19

MMERR 6 3.6.3.8.1
MMFEFB 5

MMGED 8,17,21

MMGEFB 11

MMGET 7,8,9,10

MMGETE 1,8 3.6.3.5.3
MMGETR 1,4,9 3.6.3.5.1
MMGETW 1,10 3.6.3.5.2
MMGNEW 8

MMGNWE 8

MMI@MC 11,13,14,15,23

MMMDMH 4

MMNWR 12

MM@PRD 1,4,13 3.6.3.3.1
MM@PWD 1,14 3.6.3.3.2
MM@PWS 1,18 3.6.3.3.3
MMP@SN 1 3.6.3.6.1
MMPUT 16,17,18,19

MMPUTE 1,17 3.6.3.4.3.

B.1-2

Name

MMPUTR
MMPUTW
MMREW
MMRMD

MMRRS
MMSAMD
MMSFEI
MMSKIP
MMSUD
MMUHMD
MEUPMD
MMVBA
MMVNM
MAVTD
MMVUM

EXECUTIVE SYSTEM MODULES

Figure(s)

1,4,18
1,19

1
4,13,20,23
13

12

2

8,17,21

22,23
18

n
4,5,7,12,13,16,20,23
13,14,15,22

13,14,15

24

B.1-3

Section

3.6.3.4.1
3.6.3.4.2
3.6.3.6.2

3.6.3.6.3

3.6.3.8,2

INDEX OF MODULE NAMES

B.1.1.2 Table Manager

The modules comprising the TM are listed below. Figure numbers refer to figures in
Section 3.6.4.7

Name Figure(s) Section
TMBLD1 24 3.6.4.5.1
TMCL@S 24 3.6.4.3
TMEA 26

TMEAIN 26

TMEARS 26

TMEARD 26

TMEB 26

TMEBIN 26

TMEBRS 26

TMEBRD 26

TMEDI1 24

TMEDTB 27

TMERR 25 3.6.4.6.1
TMFTE 24

TMGEN1 24

TMINX 27

TMINYZ 27

TMINEX 26,27

TMLIN 26

TMLINT 26

TMLRS 26 ’
TMLRD 26

TMM@PN 24

TMEPN 24 3.6.4.2.2
TM@PNA ' 24 3.6.4.2.1
TMSRCH 27

TMSTD 24,27

TMTERP 24,27 3.6.4.4
TMTABP 27

TMTBL1 27

TMTBL2 27

TMTBL3 27

TMT@PN 24

TMVSEQ 24

B.1-4

EXECUTIVE SYSTEM MODULES

B.1.2 Dynamic Storage Management System

The modules comprising the DSM are listed below. Figure numbers refer to figures in

Section 3.7.5

Name Figure(s) Section
DSMB 1 3.7.3.1
DSMCAB 3,9

DSMCEN 4,6,7

DSMDFB S

DSMDLK 3,4,9 3.7.4.1
DSMERR 2

DSMET 1,2,4,6,7,8

DSMEUX 2,8,9

DSUF 1,3,9 : 3.7.3.2
DSMFLB 4,7

DSMG 1,4,9 3.7.3.3
DSMGUB y

DSMI 1,5 3.7.3.4
DSMIDS 5

DSML 1,6 3.7.3.5 ’
DSMQ 1,7 3.7.3.6
DSMR 1 3.7.3.7
DSMRDC 4

DSMRLK 4,9

DSMRSV y

DSMS 1,8,9 3.7.3.8
DSMU 1 3.7.3.9
DSMX 1,9 3.7.3.10
NSMXFB 9

DSM1ST 3

B.1-5

INDEX OF MODULE NAMES

B.1.3 Executive Management System

The modules comprising the EM are listed below. Figure numbers refer to figures in

Section 3.5

Name Figure(s) Section
XAR 6

XAT 2,6

XBS 3,14 3.5.4.,1
XBSDBM 3

XBSDFL 3

XBSDSM 3

XBSGCS 3

XBSIN 3

XBSSP 3

XBSTP 3

XCA 4,6 3.5.4.6
XCABST 4

XCACL@ y

XCAI Ty

XCAMST L

XCAMXX ' 4

XCANCS i

XCANS 4

XCANSP ‘ Y

XCANWC y

XCATRA y

XCo 6

XCSCCS . 11

XCSCIL 11

XCSCRD 11

- B.1-6

Name
XCSCRS
XCSIL
XCSINT
XCSL@G
XCSP
XCSPM
XCSRD
XCSRS
XCSSL
XCSST
XCT
XCTBDU
XCTBMD
XCTDU
XCTEFN
XDK
XDT
XEN
XEX
XEXA
XEXL
XEM
XFMANT
XFMDSM
XFTMMM
XFMTM
XG@
XIF

XLD

EXECUTIVE SYSTEM MODULES

Figure(s)
11
4,6

16

1,10
10
10
10

10

6,11

6,12

B.1-7

Section

3.5.4.3

3.5.4.7

3.5.4.4

Name

XLDALL

XLDBGN

XLDCCS

XLDEND

XLDERR

XLDFDM

XLDFDU

XLDLDM

XLDLDU

XLDVCS

XLDVUT

XLINK

XM

XMCSIL

XMCSPM

XMERR

XMERRI

XMRE

XPA

XPAVTB

XPR

XPU

XRE

XRT

XRTAMU

XRTBAD

XRTBCS

XRTBLR

XRTCAL

INDEX OF MODULE NAMES

Figure(s)
12

12

12

12

13

12

12

12

12

12

12
1,10,14
1

15

15
14,15
15

15

6,16

16

Section

6.3.8.3

3.5.4,5

3.5.4.2

EXECUTIVE SYSTEM MODULES

Name Figure(s) Section
XRTCSS 17,18
XRTDAT 18
XRTEND 18
XRTI 17
XRTLRF 5,17
XRTLSA 4,17
XRTLSE 4,5,17
XRT@DB 5,17,18,19
XRTPIN 18
XRTRS 17
XRTSAR 18
XRTSAT 19
XRTSCA 19
XRTSCH 18
XRTSCR 18
XRTSDA 19
XRTSDR) 19
XRTSDT 19
XRTSEN : 19
XRTSER 19
XRTSEX 19
XRTSG@ 19
XRTSIF 19
XRTSLD 19
XRTSPA 19
XRTSPR 19
XRTSPU 19
¥RTSRE 19
XRTSSS 19

B.1-9

INDEX OF MODULE NAMES

Name Figure(s) Section
XRTSTA 19

XRTSUL 19

XRTSUP 19

XRTSYN 5,17,19

XRTTC 5,17

XRTU 18

XRTVCS 5,17

XSS 6

XTB 6,20

XTBADV 20

XTBAIV 20

XTBLD1 20

XTBMVA 20

XTBPNC 20

XTBPVA 20

XTBSDV 20

XTBSIV 20

XTBSNT 20

XTBSVA 20

XTBVAR A 20

XUN 6,21

XUNALL 21

XUNBGN 21

XUNCCS 21

XUNCPY 21

XUNEND 21

XUNERR 21 6.3.8.4
XUNLUH 21

XXFMSG 23 3.5.4.8, 3,5.5.1
XXNMSG 24 3.5.5.2

B.1-10

EXECUTIVE SYSTEM MODULES

B.1.4, UPDATE EM Subsystem
The modules comprising the EM are listed. Figure numbers refer to figures in

Section 3.8.8

Name Figure(s) Section
XUP 6,1

XUPADD 1

XUPADS 5

XUPALL 1

XUPCDT 2

XUPCGP 2

XUPCHG 1,2

XUPCHI 5

XUPCHS S

XUPCHX 5

XUPCIN 2

XUPC@B 1,2

XUPC@S 5

XUPCPY 1

XUPCQD 5

XUPCQT 2

XUPCS 1

XUPDIR 5

XUPECE 5

XUPECI iy

XUPERR 3 3.8.7.1
XUPGPR 2,6

XUPINS 4,5

XUPLST 1

XUPMLV 4,5

XUPNEW 1

B.1-11

ORIGINAL PAGE IS
OF POOR QUALITY

Name

XUPNMT
XUP@MS
XUP@MT
XUP@ST
XUPPRE
XUPRLV
XUPSRC
XUPSUM
XUPSYN
XUPXCR

XUPXFR

INDEX OF MODULE NAMES

Figure(s) Section

1,2,6

B.1-12

EXECUTIVE SYSTEM MODULES

B.1.5 General Utilities

The modules comprising the General Utilities are listed below. Figure numbers refer

to figures in Section 3.9.4

Name Figure(s) Section
ALPHA 1 3.9.2.1
DIGIT 1 3.9.2.2
DVALUE 1 3.9.2.3
IAND 1 3.9.2.4
ICD 1 3.9.2.5
ICI 1 3.9.2.¢6
ICPMPL 1 3.9.2.7
IDATE 1 3.9.2.8
IL@C 1 3.9.2.9
ILSHFT 1 3.9.2.10
IMASK 1 3.9.2.11
IZR 1 3.9.2,12
IRSHFT 1 3.9.2.13
ISHIFT 1 3.9.2.14
ITIME 1 3.9.2.15
IVALUE 1 3.9.2.16
IXPR 1 3.9.2.17
MEMNUM 1 3.9.2.18
NUMTYP 1 3.9.2.19
NWDTYP 1 3.9.2.20
RVALUE 1 3.9.2.21
XASKP 1 3.9.2.22
XBSRIN 1 3.9.3.23
XBSRRD 1 3.9.2,24
XBSRRS 1 3.9.2,25

B.1-13

Name
XCR
XCRADD
XCRCF
XCRCH
XCRCI
XCRD@T
XCRDR
XCREF
XCREXP
XCRFC
XCRILL
XCRPD
XCRPH
XCRPN
XCRP@T
XCRPS
XCRREN
XCRRND
XCRSEN
XCRSNM
XCRSRD
XCRWC
XCRWCH
XEXIT
XFAN
XFETCH
XFMTQ

XGETP

INDEX OF MODULE NAMES

Figure(s)
1,2

2,8

2,8

2,8
3,6,8

2,3
2,3,4
2,3,4,5,7
3,4,5

2,6

2,7,8

3,8

2,3,7,8

B.1-14

Section

3.9.2.26

3.9.2.27

3.9.2.28
3.9.2.29
3.9.2.30
3.9.3.1

3.9.2.32

Name
XINC

XM@VE
XMPRT
XPAGE
XPK
XPKM
XPLAB
XPLABQ
XPLINE
XPUTP
XSORTE
XSTORE
XTBDMP
XTBERR
XTRACE
XTRL@C
XT1AL
XT1FV
XT2AL
XT3FL
XT3EV
XT3IF
XT3LK
XUFMSG
XUNPK
XUNPKM
XUNPKT
XVNAME

XZFILL

EXECUTIVE SYSTEM MODULES

Figure(s)
1

1

B.1-15

Section
3.9.2.34

3.9.2.34

3.9.2.35

3.8.2.36

3.9.2.37

3.9.2.38

3.9.2.38

3.9.2.40

3.9.2.41

3.9.2.42

3.9.2.u3

3.9.2.44

3.9.2.45

3.8.38.2

3.9.2.46

3.9.2.47

3.9.2.u8

'3.9.2.49

3.9.2.50
3.9.2.51
3.9.2.52
3.9.2.53
3.9.3.1

3.9.2.54
3.9.2.55
3.9.2.56
3.9.2.57

3.9.2.58

—

APPENDIX C

INDEX TO ERROR MESSAGE NUMBERS
C.1 EXECUTIVE SYSTEM ERRORS

Following is a list of the error messages and numbers for the Data Base Management
System, Dynamic Storage Management System, Executive Management System, General Utilities,

and Update.

The lower case letter n has been used where a FORTRAN name would be printed. The

lower case letter v has been used where a FORTRAN value would be printed.

C.1.1 Executive Management System (EM)

c.1.1.1 Tatal Errors

Fatal EM errors are processed by XXFMSG. For further description of the XXFMSG

module, see Section 3.5.5.1. Fatal EM errors have been assigned the numbers 1-999.

All messages are prefixed by:

##%% EXEC ERROR (ERROR NUMBER v) #¥% (CALLER n)

The messages and numbers are as follows:

1 INSUFFICIENT CORE TO EXPAND TABLE. CURRENT LENGTH OF n TABLE IS v.
2 ERROR IN ANOPP PRIMARY EDIT PHASE.

3 INSUFFICIENT CORE TO ALLOCATE n TABLES.

b MEMCUR, n, IS NOT THE SAME AS THE NAME, n, IN THE MDBT.

5 INVALID ODB ENTRY. TYPE CODE = v.

6 INVALID MEMBER TYPE OR MAX NUMBER OF MEMBERS EXCEEDED. TYPE = m.

7 KRACKED TABLE OVERFLOW. RECOMPILATION NECESSARY TO ALLOW FOR v CARD
IMAGES PER CONTROL STATEMENT.

8 MAXIMUM RECORD LENGTH, v, RETURNED FROM MEMBER MANAGER OPEN CALL FOR
MEMBER n IS NOT THE SAME AS THE MAX CS RECORD LENGTH, v, IN THE MDBT OR
THE LABEL RECORD LENGTH, v, IN THE MDBT.

9 STATUS, v, RETURNED FROM MEMBER MANAGER POSITION CALL FOR MEMBER n.

c.1-1

10

11

12

13

1

15

16

17

18

19

20

21

22

23

INDEX TO ERROR MESSAGE NUMBERS

FOR MEMBER n STATUS RETURNED FROM MEMBER MANAGER GET RECORD CALL IS v
NUMBER OF WORDS EXPECTED v -- NUMBER OF WORDS RETURNED v.

REQUESTED LABEL n IS NOT FQUND.
INVALID CONTROL STATEMENT NAME, n, ON CURRENT MEMBER n.

INVALID INPUT n = v.

INVALID INPUT n

.
UNEXPECTED ERRCOR RETURNED FROM MEMBER MANAGER CALL. CODE IS v.

INVALID INTEGER, v, USED IN IDENTIFICATION OF EXECUTIVE SYSTEM MODULE
OR FUNCTIONAL MODULE.

ERROR DETECTED IN ANOPP INITIALIZATION PHASE
UNEXPECTED OUTPUT FROM n. PARAMETER IS n - VALUE IS v.
UNEXPECTED OUTPUT FROM n. PARAMETER IS n - VALUE IS n.

END OF FILE DETECTED IN PRIMARY INPUT STREAM. INSUFFICIENT INPUT FOR
REQUIRED STARTCS.

THE LRCS BLOCK ALLOCATED IS NOT MAXIMUM REQUIRED FOR XCA PROCESSING.
NONEXPANDABLE TABLE n IS INSUFFICIENT.

SUBSTITUTION TABLE ALLOCATION IS NOT EXACT NUMBER OF WORDS MOVED TO TABLE.

c.1-2

EXECUTIVE SYSTEM ERRORS

C.1.1.2 Non-Fatal Errors

Non-fatal

EM errors are processed by XXNMSG. For further description of the XXNMSG

module, see Section 3.5.5.2. VARY4 is a ten word array which enables the printing of card

images and more explanatory error messages. Non-fatal EM errors have been assigned the

numbers 1001-1999,

All messages are prefixed by:

#%% EXEC ERROR (ERROR NUMBER v) ##* (CALLER n)

The messages and numbers are as follows:

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

INVALID LABEL FIELD.
INVALID OR MISSING CS NAME

CONTINUATTON SEQUENCE EXCEEDS MAXIMUM CARD LIMIT. SEQUENCE IS ARBITRARILY
TERMINATED.

REFERENCE MADE TO NON-EXISTENT LABEL = n.

DUPLICATE n = n.

GOTO OR IF CS REFERENCES OWN LABEL = n.

INVALID END* FIELD OR EXTRANEOUS FIELDS DETECTED ON END¥* CS.
EXTRANEOUS FIELDS DETECTED ON n CONTROL STATEMENT.

EOF DETECTED ON INCOMPLETE CS IN INPUT STREAM. IT IS CONSIDERED IN ERROR
AND IS NOT BEING PROCESSED.

INVALID CS NAME = n.
STARTCS CONTROL STATEMENT MISSING. COMPILATION CONTINUING.
INVALID STARTCS CONTROL STATEMENT. COMPLETE ERROR RECOVERY.

KEYWORD FIELD IS NOT A NAME OR MISSING = SIGN. PROCESSING CONTINUES WITH
NEXT ENCOUNTERED VALID FIELD.

THE INITIALIZATION VALUE FOR n IS INCORRECT. PROCESSING CONTINUES WITH
NEXT ENCOUNTERED VALID FIELD.

THE LENGTH OF GLOBAL CORE REQUESTED FOR THIS ANOPP RUN IS v. THE MINIMUM
LENGTH REQUIRED IS v.

n IS AN INVALID KEYWORD. PROCESSING CONTINUES WITH NEXT ENCOUNTERED VALID
FIELD.

NEXT TO LAST FIELD ON ANOPP CS IS EXTRANEOQUS.

c.1-3

ORIGINAL PAGE, Ig

OF POOR

QUALITY]

1018

1019

1020

1021

1022

1023

102k

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

lou40

INDEX TO ERROR MESSAGE NUMBERS

LAST FIELD ON ANOPP CS IS EXTRANEOUS.
INSUFFICIENT CORE TO EXPAND TABLE. CURRENT LENGTH OF n IS v.
USER PARAMETER n NOT FOUND IN USER PARAMETER TABLE.

ATTEMPT TO PERFORM n OPERATION ON TWO FIELDS OF DIFFERENT TYPES. TYPES
ARE v AND v.

ILLEGAL FIELD TYPE FOR n OPERATION. TYPE IS v.

ATTEMPT TO COMPARE TWO n FIELDS WITH INVALID LOGICAL OPERATOR. CODE FOR
OPERATOR 1S v.

EXECUTIVE ERROR INDICATOR SET TO .TRUE. WHEN PROCESSING n CONTROL STATE-
MENT.

MISSING FIELD DETECTED ON n CONTROL STATEMENT.

INVALID FIELD DETECTED ON n CONTROL STATEMENT. FIELD EXPECTED TC CONTAIN
n.

UNRECOGNIZABLE FIELD DETECTED n.
UNEXPECTED INPUT. PARAMETER IS n - VALUE IS v.
STARTCS ENCOUNTERED ON ANOPP CONTROL STATEMENT. COMPLETE ERROR RECOVERY.

DUPLICATE MEMBERS DETECTED ON ABOVE DATA CONTROL STATEMENT. MEMBER NAME
= n.

TABLE EXPANSION ON n TABLE UNSUCCESSFUL. n ENTRY NOT ADDED.

UPDATE OR TABLE (SOURCE = *) CS FORM IS INVALID IN SECONDARY INPUT STREAM.
SECONDARY INPUT STREAM MEMBER, n, DOES NOT EXIST.

SECONDARY INPUT STREAM MEMBER, n, IS NOT IN CARD IMAGE (CI) FORMAT.

LOCAL DYNAMIC STORAGE INSUFFICIENT TO ALLOCATE ALL BLOCKS NECESSARY FOR
SECONDARY INPUT STREAM PROCESSING.

LOCAL DYNAMIC STORAGE HAS BEEN INITIALIZED BUT NOT RELEASED.

USER LOCK ON n HAS NOT BEEN CLEARED.

DATA TABLE n (n) OPENED BUT NOT CLOSED, TABLE REMOVED FROM CORE.
DATA MEMBER n (n) OPENED BUT NOT CLOSED. LOGICAL CLOSE PERFORMED.

DATA UNIT n, DATA MEMBER n CANNOT BE OPENED TO READ.

C.1-4

EXECUTIVE SYSTEM ERRORS

€.1.2 Data Base Management System (DBM)

C.1.2.1 Member Manager (MM)

Member Manager module and control statement error messages are processed by MMERR.

For further description of the MMERR module, see Section 3.6.3.9.1.

All messages are prefixed by:

%% DBM ERROR)ERROR NUMBER v) *** (CALLER n)

The messages and numbers are as follows:

1

2

10

11

12

13

14

15

16

17

18

19

BAD INPUT TO SUBRQUTINE n. VALUE = v.
DATA UNIT NAME NOT UNIQUE.

EXTERNAL FILE NAME NOT UNIQUE.

DATA UNIT DIRECTORY FULL.

DATA MEMBER DIRECTORY SPACE NOT AVAILABLE. LENGTH OF MEMBER DIRECTORY IS
n. LENGTH OF DYNAMIC STORAGE BLOCK OBTAINED FOR THE MEMBER DIRECTORY IS v.

BUFFER SPACE NOT AVAILABLE.

BUFFER ALREADY EXISTS.

BUFFER DOES NOT EXIST.

FILE DOES NOT BAVE PROPER HEADER.

DATA UNIT DOES NOT EXIST.

CANNOT GENERATE EXTERNAL FILE NAME,

DATA UNIT DIRECTORY SPACE IS NOT AVAILABLE.
DATA TABLE DIRECTORY SPACE IS NOT AVAILABLE.
ACTIVE MEMBER DIRECTORY SPACE IS NOT AVAILABLE.
MEMBER DIRECTORY SPACE IS NOT AVAILABLE.
XSUNIT NOT CREATED.

DATA NOT CREATED.

OPEN MEMBER COUNT NOT ZERO.

LAST RECORD NOT COMPLETE ON UNIT n MEMBER n.

c.1-5

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

4y

45

46

INDEX TO ERROR MESSAGE NUMBERS

LIBRARY FILE DIRECTORY SPACE NOT AVAILABLE.
DATA MEMBER IS ALREADY OPEN ON UNIT n MEMBER n.
DATA UNIT IS NOT IN THE UNIT DIRECTORY. UNIT n MEMBER n.

ACTIVE MEMBER DIRECTORY IS FULL AND CANNOT BE EXPANDED - EXPAND FIELD
LENGTH AND GLOBAL DYNAMIC STORAGE.

DATA UNIT ALREADY OPEN FOR DIRECT WRITE. UNIT n MEMBER n.
WRITE INHIBITED ON DATA UNIT. UNIT n MEMBER n.

INSUFFICIENT DYNAMIC STORAGE FOR MEMBER MANAGER USE - EXPAND FIELD LENGTH
AND GLOBAL DYNAMIC STORAGE. UNIT n MEMBER n.

THE DATA MEMBER IS OPEN TO TABLE MANAGER. UNIT n MEMBER n.
DATA MEMBER IS NOT IN MEMBER DIRECTORY. UNIT n MEMBER n.
CPEN MEMBER COUNT IS NEGATIVE. UNIT n.

DATA UNIT OR MEMBER NAME IS MALFORMED. UNIT n.

READ ERROR ON MEMBER DIRECTORY. UNIT n.

READ ERROR ON MEMBER HEADER. UNIT n MEMBER n.

INVALID DIRECTORY OR TABLE ID.

INVALID MODE ARGUMENT INPUT. UNIT n MEMBER n.

INVALID UNIT DIRECTORY ENTRY. UNIT n.

FILE BUFFER ASSIGNMENT FAILED. UNIT n.

INVALID INPUT ARGUMENT. UNIT n MEMBER n.

INVALID MEMBER FORMAT. UNIT n MEMBER n. FORMAT SPECIFICATION IMAGE
FOLLOWS. n ... n.

MISMATCHED RIGHT AND LEFT PARENTHESES. UNIT n MEMBER n.
UNRECOGNIZABLE FIELD(S) IN FORMAT. UNIT n MEMBER n.
FORMAT FIELD - TYPE = n, VALUE = v.

INVALID VARIABLE FORMAT - VARIABLE REPEAT GROUP MUST BE LAST. UNIT n
MEMBER n.

INVALID REPEAT GROUP SPECIFICATION - FORMAT IS INVALID. UNIT n MEMBER n.
INVALID ELEMENT SPECIFICATION - FORMAT IS INVALID. UNIT n MEMBER n.
EXTRANEOUS LEFT PARENTHESIS. UNIT n MEMBER n.

UNIDENTIFIABLE SEPARATOR IN FORMAT. UNIT n MEMBER n.

C.1-6

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

EXECUTIVE SYSTEM ERRORS

MORE THAN ONE VARIABLE REPEATING GROUP SPECIFIED. UNIT n MEMBER n.

CYBER RECORD MANAGER ERROR ON PUT. UNIT n MEMBER n.

PREVIOUS RECORD IS INCOMPLETE. UNIT n MEMBER n.

RECORD LENGTH IS INCOMPATIBLE WITH FORMAT SPECIFICATION. UNIT n MEMBER n.

NUMBER OF RECORDS PUT TO MEMBER EXCEEDS MAXIMUM DEFINED BY THE OPEN REQUEST.
UNIT n MEMBER n.

NUMBER OF WORDS TO BE PUT IS NEGATIVE. UNIT n MEMBER n.

UNUSED.

UNUSED.

LAST I/0 OPERATION DID NOT END ON AN ELEMENT BOUNDARY. UNIT n MEMBER n.
THIS CALL MAY NOT BE USED WITH UNFORMATTED RECORDS. UNIT n MEMBER n.
NUMBER OF ELEMENTS TO BE PUT IS NEGATIVE. OUNIT n MEMBER n.

TOTAL RECORD LENGTH EXCEEDS FIXED FORMAT SPECIFICATION. UNIT n MEMBER n.

RECORD DIRECTORY IS FULL - INCREASE MAXIMUM NUMBER OF RECORDS IN OPEN
REQUEST. UNIT n MEMBER n.

NUMBER OF WORDS TO BE READ IS LESS THAN OR EQUAL TO ZERO. UNIT n MEMBER n.
ATTEMPT TO READ BEYOND END OF MEMBER. UNIT n MEMBER n.

CYBER RECORD MANAGER ERROR ON GET. UNIT n MEMBER n.

RECORD ARRAY SIZE IS LESS THAN OR EQUAL TO ZERO. UNIT n MEMBER n.

NUMBER OF ELEMENTS TO BE READ IS LESS THAN OR EQUAL TO ZERO. UNIT n -
MEMBER n.

MEMBER IS UNFORMATTED - IMPROPER USE OF THIS CALL. UNIT n MEMBER n.

NUMBER OF WORDS READ IS INCOMPATIBLE WITH THE FORMAT ELEMENT SPECIFICATIONS.
UNIT n MEMBER n.

NAME(3) IS NOT & VALID IDX. UNIT n MEMBER n.
INVALID DATA MEMBER NAME OR IDX IN NAME ARGUMENT. UNIT n MEMBER n.
INVALID DATA UNIT NAME OR IDX IN NAME ARGUMENT. UNIT n MEMBER n.

DATA MEMBER IS NOT OPEN FOR THE MODE SPECIFIED FOR THIS CALL. UNIT n
MEMBER n.

WARNING - OLD MEMBER IS STILL OPEN TO READ FOLLOWING CLOSE OF NEW MEMBER
OF SAME NAME. UNIT n MEMBER n.

72

73

74

75

INDEX TO ERROR MESSAGE NUMBERS -

ATTEMPTED TO CLOSE MEMBER OPEN VIA MMOPWS WHILE ANOTHER MEMBER ON THE SAME
UNIT WAS STILL OPEN VIA MMOPWD. UNIT n MEMBER n.

INSUFFICIENT GLOBAL DYNAMIC STORAGE FOR MMCLOS SCRATCH COPY. UNIT n
MEMBER n.

INVALID NAME ARGUMENT INPUT. OUNIT n MEMBER n.

INVALID MODE ARGUMENT INPUT. UNIT n MEMBER n.

The L@AD control statement uses the module XLDERR to process its errors.

The messages processed by XLDERR are listed below. For further description of

the XLDERR module, see Section 3.6.3.8.3

All messages are prefixed by:

#%% LOAD ERROR (ERROR NUMBER - v) #&% (CALLER - n)

The messages and numbers are as follows:

1

2

10

11

12

ERROR v DETECTED BY OPERATING SYSTEM ON FILE n.

INSUFFICIENT LOCAL DYNAMIC CORE IS AVAILABLE.

EXTERNAL FILE NAME n IS ALREADY ASSIGNED TO DATA UNIT n.

THE LIBRARY DIRECTORY RECORD IS INVALID. 1ID IS n, CNE IS v.

DATA UNIT n IS NOT DEFINED ON SEQUENTIAL LIBRARY n.

DATA UNIT n, DATA MEMBER n IS NOT DEFINED ON SEQUENTIAL LIBRARY n.

NUMBER OF DATA UNRITS TO BE LOADED EXCEEDS THE NUMBER OF ENTRIES AVAILABLE
IN THE DATA UNIT DIRECTORY.

DATA UNIT n ALREADY EXISTS IN THE DATA UNIT DIRECTORY.

FILE NAME /n/ GIVEN FOR DATA UNIT n IS ALREADY IN USE FOR ANOTHER DATA
UNIT.

FILE NAME /n/ GIVEN FOR DATA UNIT n IS IN USE AS A LIBRARY FILE.

LIBRARY FILE ANOMALY, DATA UNIT/MEMBER NAMED IN THE LIBRARY DIRECTORY IS
NOT ON THE LIBRARY.

LIBRARY UNIT HEADER IS INVALID v.

The UNL@AD control -tatement uses the module XUNERR to proceés its errors.

The messages processed by XUNERR are listed below. For further description of

the XUNERR module, see Section 3.6.3.8.4

All messages are prefixed by:

Cc.1-8

EXECUTIVE SYSTEM ERRORS
#%% UNLOAD ERROR (ERRCR NUMBER - v) #%% (CALLER - n)

The messages and numbers are as follows:

1

2

6

ERROR Vv DETECTED BY OPERATING SYSTEM ON FILE n.

INSUFFICIENT LOCAL DYNAMIC CORE IS AVAILABLE.

EXTERNAL FILE NAME n IS ALREADY ASSIGNED TO DATA UNIT n.
SEQUENTIAL LIBRARY FILE n WAS USED IN PREVIOUS LOAD OR UNLOAD.
DATA UNIT n IS NOT DEFINED.

DATA MEMBER n DOES NOT EXIST ON DATA UNIT n.

The DROF control statement prints its own message for errors encountered.

c.1-8

INDEX TO ERROR MESSAGE NUMBERS -

C.1.2.2 Table Manager (TM)

Table Manager and TABLE contrcl statement error messages are processed by TMERR.

further description of the TMERR module, see Section 3.6.4.6.1.

All messages are prefixed by;

%% DTM ERROR (ERROR NUMBER v) #¥*% (CALLER n)}

The messages and numbers are as follows:

10

11

12

13

14

15

16

17

18

19

20

21

ARGUMENT v OUT OF RANGE. ARGUMENT IS n.
INVALID INPUT
DYNAMIC CORE NOT AVAILABLE.

ERROR RETURNED FROM n. ERROR CODE IS v.

For

INDEPENDENT VARIABLE ARRAY NOT IN MONOTONIC SEQUENCE. ARRAY DUMP FOLLOWS

v.

INPUT RECORD FROM UNIT n, MEMBER n, NOT IN CARD IMAGE FORMAT.
LOCAL CORE BLOCK FOR CRACK TABLE NOT SUFFICIENT.

VALUE n NEEDED TO BUILD TABLE TYPE n NOT PRESENT.

INVALID VARIABLE NAME n.

INVALID INPUT - CURRENT CARD IMAGE IS NOT CARD EXPECTED.
INVALID INPUT - DUPLICATE VARIABLE NAME n.

ERROR DETECTED ON FOLLOWING CARD IMAGE v.

INVALID INPUT - MISSING FIELDS DETECTED.

INVALID INPUT - FIELD EXPECTED n.

TABLE NOT BUILT.

INVALID VALUE ENTRY, EXPECTED VARIABLE TYPE n - ACTUAL VARIABLE TYPE v.
EXCESSIVE VALUE ENTRIES.

TABLE ON UNIT - n AND MEMBER - n IS NOT OPEN AS EXPECTED.
USER DOESN'T OWN DATA TABLE.

IDX TO THE DATA TABLE DIRECTORY IS INVALID.

NAMED DATA TABLE, n; n, IS ALRﬁADY OPEN TO DATA TABLE MANAGER.

C€.1-10

22

23

24

25

26

27

28

NAMED DATA TABLE, n, n, IS ALREADY OPEN TO DATA MEMBER MANAGER.

EXECUTIVE SYSTEM ERRORS

THE DATA TABLE DIRECTORY IS FULL.

THE NAMED DATA TABLE n, n IS NOT DEFINED TO DATA BASE MANAGER.

SUFFICIENT DYNAMIC STORAGE IS NOT AVAILABLE FOR DATA TABLE n, n.

DATA MEMBER n, n, IS NOT A DTM DATA TABLE.

DATA TABLE n, n IS NOT DEFINED TO DATA TABLE MANAGER.

NAME ARGUMENT USED TO CLOSE DATA TABLE n, n MUST BE THE ONE USED IN

OPENING THE TABLE.

c.1-11

INDEX TO ERROR MESSAGE NUMBERS

C.1.3 Dynamic Storage Management System (DSM)

DSM error messages are processed by DSMERR. For further description of the DSMERR

module, see Section 3.7.4.1.
All messages are prefixed by:
%tk* DSM ERROR (ERROR NUMBER v) ##*% (CALLER n)
The messages and numbers are as follows:

1 n IS ALREADY INITIALIZED.

2 n CORE IS INSUFFICIENT FOR INITIALIZATION.
3 GDS/LDS OVERLAP.

4 n IS INVALID DS TYPE.

5 v IS INVALID DS START ADDRESS.

B n IS INVALID DS USER.

7 MIN IS GREATER THAN MAX.

8 INVALID IDX FOR n.

9 n IS ALREADY UNLOCKED.
10 n HAS ALREADY BEEN OVERLAYED.
11l n IS NOT INITIALIZED.
12 MIN OR MAX IS INVALID NEGATIVE LENGTH.

13 MIN AND MAX ARE ZERO LENGTH.

C.1-12

EXECUTIVE SYSTEM ERRORS
C.l.4 UPDATE

UPDATE error messages are processed by XUPERR. For further description of the XUPERR

module, see Section 3.8.7.1.
All messages are prefixed by:
%%%& UPDATE ERROR (ERROR NUMBER v) ##%¥* (CALLER n)
The messages and numbers are as follows:

1 INVALID INPUT = v.

2 MEMBER MANAGER OPEN TO READ FOR DATA UNIT n, DATA MEMBER n.
3 INVALID MEMBER LEVEL DIRECTIVE n.

4 INSUFFICIENT CORE TO ALLOCATE v WORDS.

5 UNIT = n IS NOT IN UNIT DIRECTORY.

6 INVALID KEYWORD FIELD.

7 THE ALL PARAMETER MAY NOT BE SPECIFIED DURING CREATE MODE.
8 OLDU, NEWU, OR SOURCE UNITS ARE IN CONFLICT.

g REQUIRED DATA UNIT IS NOT SPECIFIED.
10 CURRENT CONTROL STATEMENT NAME IS n.
11 INVALID XEYWORD = n.
12 DATA UNIT n IS ARCHIVED.

13 INVALID LIST OPTION = n.

14 NUMBER OF RECORDS OR LENGTH OF ARRAY TO HOLD RECORDS IN TRANSIT IS
INCORRECT.)

15 SOURCE DATA MEMBER CONTAINING THE SET OF UPDATE DIRECTIVES IS NOT IN
CARD IMAGE FORMAT.

16 INCORRECT TABLE NAME FOR n TABLE.

17 DATA UNIT n, DATA MEMBER n IS NOT OPEN TO READ.

18 DATA UNIT n, DATA MEMBER n IS NOT OPEN TO WRITE.

19 NUMBER OF RECORDS TO BE COPIED v OR LENGTH OF ARRAY v IS INCORRECT.

20 DATA MEMBER n ALREADY EXISTS ON THE NEW DATA UNIT n.

C.1-13

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Yy

45

46

47

INbEX TO ERROR MESSAGE NUMBERS

NUMBER OF RECORDS v COPIED TC THE NEW DATA MEMBER IS LESS THAN NUMBER OF
RECORDS v REQUESTED.

BAD FIELDS RETURNED FROM CALL TO XCR.

INVALID RECORD READ FROM DATA MEMBER UPDATS.

n IS AN INVALID RECORD LEVEL DIRECTIVE.

NUMBER OF CARD IMAGES EXCEEDS MAXIMUM ALLOWED v.

DIRECTIVE INCOMPLETE WHEN END OF SOURCE MEMBER ENCOUNTERED. COMPLETE
ERROR RECOVERY.

INSUFFICIENT STORAGE FOR CRACKING UPDATE DIRECTIVE.
INSUFFICIENT CORE FOR STORING THE UPDATE DIRECTIVE IMAGE.
DIRECTIVE CONTAINS A FIELD OF IMPROPER TYPE. FIELD SHOULD CONTAIN A NAME.

DATA UNIT n, DATA MEMBER n SPECIFIED TO BE COPIED DOES NOT EXIST ON OLD
UNIT.

UPDATE DIRECTIVE CONTAINS A FIELD OF IMPROPER TYPE. FIELD SHOULD CONTAIN
AN INTEGER.

EXTRANEOUS FIELDS ON UPDATE DIRECTIVE.

LAST RECORD TO BE COPIED v IS NOT IN THE RANGE OF RECORDS ON OLDM.
INVALID FORM = KEYWORD FIELD.

RECORD v TO BE INSERTED IS NOT WITHIN THE RANGE OF RECORDS ON OLDM.
INSUFFICIENT CORE TO ALLOCATE OR EXPAND n TABLE.

THE OLDM KEYWORD FIELD IS NOT FOLLOWED BY A DATA UNIT, A DATA MEMBER, OR *.
INVALID NEWM KEYWORD FIELD. NEWM = MUST BE FOLLOWED BY A MEMBER NAME.
INVALID FORMAT FIELD.

INVALID MNR KEYWORD FIELD. MNR = MUST BE FOLLOWED BY AN INTEGER.

REQUIRED KEYWORD OLDM IS NOT PRESENT.

REQUIRED KEYWORD NEWM IS NOT PRESENT.

OLDM = n (IS NOT FOLLOWED BY A DATA MEMBER NAME).

DATA MEMEER NAME n IS NOT FOLLOWED BY CLOSING PARENTHESIS

THE OLDM KEYWORD FIELD IS NOT FOLLOWED BY A DATA UNIT OF A MEMBER NAME.
THE -DELETE RECORD LEVEL DIRECTIVE DOES NOT INCLUDE RECORD NUMBERS.

LAST RECORD v TO BE DELETED IS NOT GREATER THAN THE FIRST RECORD v.

C.1-14

48

49

50

51

52

EXECUTIVE SYSTEM ERRORS

RECORD v AFTER WHICH RECORDS ARE TO BE INSERTED, IS LT OLDM REFERENCE
POINTER v.

INVALID INPUT n = v.
RANGE v = v OF RECORDS TO BE INSERTED NOT WITHIN RANGE OF OLDM.
SOURCE DATA UNIT n, DATA MEMBER n CANNOT BE FOUND.

OLDM DATA UNIT n, DATA MEMBER n CANNOT BE FOUND.

c.1-15

INDEX TO ERROR MESSAGE NUMBERS

C.1.5 General Utilities

Most General Utility fatal error messages are processed by XUFMSG. However, several
utility modules which are called mainly by Table Manager in maintaining data tables

utilize a separate error message module, XTBERR.

The messages processed by XUFMSG are listed below. TFor futher description of the

XUFMSG module, see Section 3.9.3.1.
All messages are prefixed by:
#¥% UTILITY ERROR (ERROR NUMBER v) *##% (CALLER n)
The messages and numbers are as follows:

1 ARGUMENT n OUT OF RANGE. ARGUMENT IS v.

2 ARGUMENT n IS NOT A NUMERIC CHARACTER AS BXPECTEb. ARGUMENT IS v.
3 INVALID INPUT n = v.

4 ARGUMENT n IS AN INVALID ANOPP TYPE CODE. ARGUMENT IS v.

5 USER PARAMETER n NOT FOUND IN USER PARAMETER TABLE.

6 USER PARAMETER TYPE v DOESN'T MATCH TYPE IN UPT v.

7 REQUEST TO EXPAND n NOT COMPLETE.

8 INVALID INPUT n = n.

9 n DYNAMIC CORE NOT AVAILABLE FOR n TABLE ALLOCATION.

For further description of the XTBERR module, see Section 3.9.3.2.
All messages are prefixed by:

%%% XTB ERROR (ERRCR NUMBER v) #*¥** (CALLER n)
The messages and numbers are as follows:

1l INVALID CHAIN IDENTIFIER - n = v.

2 INVALID KEY POSITION - n = v.

3 INVALID POSITION INDICATOR - n'= v,
L NO RCOM FOR NEW ENTRIES - n = v,

5 INVALID SYSTEM TABLE TYPE - n = v,

- C.1-16

APPENDIX D

REFERENCES

Publications referenced in this manual are listed below in alphabetic order.

CYBER Record Manager Reference Manual

Control Data Corporation

Publication: 60307300

CYBER Record Manager User's Guide

Control Data Corporation

Publication: 60359600

FORTIAN Extended Version 4 Reference Manual

Control Data Corporation

Publication: 60305601

NASTRAN PROGRAMMERS MANUAL

National Aercnautic and Space Administration

Publication: SP-223 (01)

NOS 1.0 Reference Manual

Control Data Corporation

Publication: 60435400

Update Reference Manual

Control Data Corporation

Publication: 60342500

